Likelihood-Ratio Regularized Quantile Regression: Adapting Conformal Prediction to High-Dimensional Covariate Shifts
- URL: http://arxiv.org/abs/2502.13030v1
- Date: Tue, 18 Feb 2025 16:46:44 GMT
- Title: Likelihood-Ratio Regularized Quantile Regression: Adapting Conformal Prediction to High-Dimensional Covariate Shifts
- Authors: Sunay Joshi, Shayan Kiyani, George Pappas, Edgar Dobriban, Hamed Hassani,
- Abstract summary: We introduce the likelihood ratio regularized quantile regression algorithm, which combines the pinball loss with a novel choice of regularization.
We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term.
Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks.
- Score: 35.16750653336608
- License:
- Abstract: We consider the problem of conformal prediction under covariate shift. Given labeled data from a source domain and unlabeled data from a covariate shifted target domain, we seek to construct prediction sets with valid marginal coverage in the target domain. Most existing methods require estimating the unknown likelihood ratio function, which can be prohibitive for high-dimensional data such as images. To address this challenge, we introduce the likelihood ratio regularized quantile regression (LR-QR) algorithm, which combines the pinball loss with a novel choice of regularization in order to construct a threshold function without directly estimating the unknown likelihood ratio. We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term that we can control. Our proofs draw on a novel analysis of coverage via stability bounds from learning theory. Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks, including a regression task for the Communities and Crime dataset, and an image classification task from the WILDS repository.
Related papers
- Zeroth-order Informed Fine-Tuning for Diffusion Model: A Recursive Likelihood Ratio Optimizer [9.153197757307762]
probabilistic diffusion model (DM) is a powerful framework for visual generation.
How to efficiently align the foundation DM is a crucial task.
We propose the Recursive Likelihood Ratio (RLR), a zeroth-order informed fine-tuning paradigm for DM.
arXiv Detail & Related papers (2025-02-02T03:00:26Z) - Density-Calibrated Conformal Quantile Regression [2.0485358181172453]
This paper introduces the Density-Calibrated Conformal Quantile Regression (CQR-d) method.
CQR-d incorporates local information through a weighted combination of local and global conformity scores, where the weights are determined by local data density.
We prove that CQR-d provides valid marginal coverage at level $1 - alpha - epsilon$, where $epsilon$ represents a small tolerance from numerical optimization.
arXiv Detail & Related papers (2024-11-29T07:41:20Z) - Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
Policy evaluation via Monte Carlo simulation is at the core of many MC Reinforcement Learning (RL) algorithms.
We propose as a quality index a surrogate of the mean squared error of a return estimator that uses trajectories of different lengths.
We present an adaptive algorithm called Robust and Iterative Data collection strategy Optimization (RIDO)
arXiv Detail & Related papers (2024-10-17T11:47:56Z) - Beta quantile regression for robust estimation of uncertainty in the
presence of outliers [1.6377726761463862]
Quantile Regression can be used to estimate aleatoric uncertainty in deep neural networks.
We propose a robust solution for quantile regression that incorporates concepts from robust divergence.
arXiv Detail & Related papers (2023-09-14T01:18:57Z) - Semi-Supervised Deep Regression with Uncertainty Consistency and
Variational Model Ensembling via Bayesian Neural Networks [31.67508478764597]
We propose a novel approach to semi-supervised regression, namely Uncertainty-Consistent Variational Model Ensembling (UCVME)
Our consistency loss significantly improves uncertainty estimates and allows higher quality pseudo-labels to be assigned greater importance under heteroscedastic regression.
Experiments show that our method outperforms state-of-the-art alternatives on different tasks and can be competitive with supervised methods that use full labels.
arXiv Detail & Related papers (2023-02-15T10:40:51Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
We argue that devising simpler methods for learning predictors on existing features is a promising direction for future research.
We introduce Domain-Adjusted Regression (DARE), a convex objective for learning a linear predictor that is provably robust under a new model of distribution shift.
Under a natural model, we prove that the DARE solution is the minimax-optimal predictor for a constrained set of test distributions.
arXiv Detail & Related papers (2022-02-14T16:42:16Z) - Deep Quantile Regression for Uncertainty Estimation in Unsupervised and
Supervised Lesion Detection [0.0]
Uncertainty is important in critical applications such as anomaly or lesion detection and clinical diagnosis.
In this work, we focus on using quantile regression to estimate aleatoric uncertainty and use it for estimating uncertainty in both supervised and unsupervised lesion detection problems.
We show how quantile regression can be used to characterize expert disagreement in the location of lesion boundaries.
arXiv Detail & Related papers (2021-09-20T08:50:21Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - Sparse Feature Selection Makes Batch Reinforcement Learning More Sample
Efficient [62.24615324523435]
This paper provides a statistical analysis of high-dimensional batch Reinforcement Learning (RL) using sparse linear function approximation.
When there is a large number of candidate features, our result sheds light on the fact that sparsity-aware methods can make batch RL more sample efficient.
arXiv Detail & Related papers (2020-11-08T16:48:02Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.