論文の概要: Bellwether Trades: Characteristics of Trades influential in Predicting Future Price Movements in Markets
- arxiv url: http://arxiv.org/abs/2409.05192v1
- Date: Sun, 8 Sep 2024 18:59:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 16:58:34.144616
- Title: Bellwether Trades: Characteristics of Trades influential in Predicting Future Price Movements in Markets
- Title(参考訳): ベルウェザートレーディング:市場の将来物価変動予測に影響を及ぼす取引の特徴
- Authors: Tejas Ramdas, Martin T. Wells,
- Abstract要約: 我々は、重要な情報を含む取引の特徴を特定するために、強力な非線形機械学習手法を活用している。
まず、将来の市場の動きを正確に予測する上で、最適化されたニューラルネットワーク予測器の有効性を示す。
次に、この成功したニューラルネットワーク予測器から得られる情報を用いて、最適化されたニューラルネットワークの将来の価格変動予測に最も影響した各データポイント(トレーディングウィンドウ)内の個々の取引をピンポイントする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this study, we leverage powerful non-linear machine learning methods to identify the characteristics of trades that contain valuable information. First, we demonstrate the effectiveness of our optimized neural network predictor in accurately predicting future market movements. Then, we utilize the information from this successful neural network predictor to pinpoint the individual trades within each data point (trading window) that had the most impact on the optimized neural network's prediction of future price movements. This approach helps us uncover important insights about the heterogeneity in information content provided by trades of different sizes, venues, trading contexts, and over time.
- Abstract(参考訳): 本研究では,重要な情報を含む取引の特徴を識別するために,強力な非線形機械学習手法を活用する。
まず、将来の市場の動きを正確に予測する上で、最適化されたニューラルネットワーク予測器の有効性を示す。
次に、この成功したニューラルネットワーク予測器から得られる情報を用いて、最適化されたニューラルネットワークの将来の価格変動予測に最も影響した各データポイント(トレーディングウィンドウ)内の個々の取引をピンポイントする。
このアプローチは、さまざまなサイズの取引、会場、取引コンテキスト、時間とともに提供される情報コンテンツにおける異質性に関する重要な洞察を明らかにするのに役立ちます。
関連論文リスト
- Transfer learning for financial data predictions: a systematic review [0.0]
金融時系列データは、正確な株価予測に重大な課題を提起する。
伝統的な統計手法は、線形性や正規性といった仮定を、金融時系列の非線形の性質には適さないものとした。
機械学習の方法論は、データ内の非線形関係をキャプチャすることができる。
論文 参考訳(メタデータ) (2024-09-24T20:52:32Z) - Temporal and Heterogeneous Graph Neural Network for Financial Time
Series Prediction [14.056579711850578]
金融時系列における価格変動の動的関係を学習するための時間的・不均一なグラフニューラルネットワーク(THGNN)アプローチを提案する。
われわれは米国と中国における株式市場に関する広範な実験を行っている。
論文 参考訳(メタデータ) (2023-05-09T11:17:46Z) - DNN-ForwardTesting: A New Trading Strategy Validation using Statistical
Timeseries Analysis and Deep Neural Networks [0.6882042556551609]
我々はDNN-forwardtestingと呼ばれる新しいトレーディング戦略を提案し、ディープニューラルネットワークによって予測される将来についてテストすることで適用戦略を決定する。
我々の取引システムは、DNNの予測に適用することで最も効果的な技術指標を計算し、そのような指標を使って取引を誘導する。
論文 参考訳(メタデータ) (2022-10-20T19:00:59Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - Taking Over the Stock Market: Adversarial Perturbations Against
Algorithmic Traders [47.32228513808444]
本稿では,敵対的学習手法を用いて,攻撃者がアルゴリズム取引システムに影響を与える現実的なシナリオを提案する。
入力ストリームに追加されると、我々の摂動は将来目に見えないデータポイントのトレーディングアルゴリズムを騙すことができることを示す。
論文 参考訳(メタデータ) (2020-10-19T06:28:05Z) - A Deep Learning Framework for Predicting Digital Asset Price Movement
from Trade-by-trade Data [20.392440676633573]
本稿では,取引単位のデータから暗号通貨の価格変動を予測する枠組みを提案する。
このモデルは、1年近いトレードバイトレーダデータで高いパフォーマンスを達成するために訓練されている。
現実的な取引シミュレーション環境では、モデルによる予測は簡単に収益化できる。
論文 参考訳(メタデータ) (2020-10-11T10:42:02Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
トランスファーラーニングは、訓練済みのディープニューラルネットワークを画像認識タスクに新しいドメインに適用するための強力な方法論である。
本研究では,非逆学習モデルよりも逆学習モデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-07-11T22:48:42Z) - Adversarial Attacks on Machine Learning Systems for High-Frequency
Trading [55.30403936506338]
逆機械学習の観点から,アルゴリズム取引のバリュエーションモデルについて検討する。
攻撃コストを最小限に抑えるサイズ制約で、このドメインに特有の新たな攻撃を導入する。
本稿では、金融モデルのロバスト性について研究・評価するための分析ツールとして、これらの攻撃がどのように利用できるかについて論じる。
論文 参考訳(メタデータ) (2020-02-21T22:04:35Z) - Value-driven Hindsight Modelling [68.658900923595]
値推定は強化学習(RL)パラダイムの重要な構成要素である。
モデル学習は、観測系列に存在する豊富な遷移構造を利用することができるが、このアプローチは通常、報酬関数に敏感ではない。
この2つの極点の間に位置するRLにおける表現学習のアプローチを開発する。
これにより、タスクに直接関連し、値関数の学習を加速できる、抽出可能な予測ターゲットが提供される。
論文 参考訳(メタデータ) (2020-02-19T18:10:20Z) - Hold me tight! Influence of discriminative features on deep network
boundaries [63.627760598441796]
本稿では,データセットの特徴と,サンプルから決定境界までの距離を関連付ける新しい視点を提案する。
これにより、トレーニングサンプルの位置を慎重に調整し、大規模ビジョンデータセットでトレーニングされたCNNの境界における誘発された変化を測定することができる。
論文 参考訳(メタデータ) (2020-02-15T09:29:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。