Lung-DETR: Deformable Detection Transformer for Sparse Lung Nodule Anomaly Detection
- URL: http://arxiv.org/abs/2409.05200v1
- Date: Sun, 8 Sep 2024 19:24:38 GMT
- Title: Lung-DETR: Deformable Detection Transformer for Sparse Lung Nodule Anomaly Detection
- Authors: Hooman Ramezani, Dionne Aleman, Daniel Létourneau,
- Abstract summary: Accurate lung nodule detection for computed tomography (CT) scan imagery is challenging in real-world settings.
We introduce a novel solution leveraging custom data preprocessing and Deformable Detection Transformer (Deformable- DETR)
A 7.5mm Maximum Intensity Projection (MIP) is utilized to combine adjacent lung slices into single images, reducing the slice count and decreasing sparsity.
Our model achieves state-of-the-art performance on the LUNA16 dataset with an F1 score of 94.2% (95.2% recall, 93.3% precision)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate lung nodule detection for computed tomography (CT) scan imagery is challenging in real-world settings due to the sparse occurrence of nodules and similarity to other anatomical structures. In a typical positive case, nodules may appear in as few as 3% of CT slices, complicating detection. To address this, we reframe the problem as an anomaly detection task, targeting rare nodule occurrences in a predominantly normal dataset. We introduce a novel solution leveraging custom data preprocessing and Deformable Detection Transformer (Deformable- DETR). A 7.5mm Maximum Intensity Projection (MIP) is utilized to combine adjacent lung slices into single images, reducing the slice count and decreasing nodule sparsity. This enhances spatial context, allowing for better differentiation between nodules and other structures such as complex vascular structures and bronchioles. Deformable-DETR is employed to detect nodules, with a custom focal loss function to better handle the imbalanced dataset. Our model achieves state-of-the-art performance on the LUNA16 dataset with an F1 score of 94.2% (95.2% recall, 93.3% precision) on a dataset sparsely populated with lung nodules that is reflective of real-world clinical data.
Related papers
- Ultrasound Lung Aeration Map via Physics-Aware Neural Operators [78.6077820217471]
Lung ultrasound is a growing modality in clinics for diagnosing acute and chronic lung diseases.
It is complicated by complex reverberations from the pleural interface caused by the inability of ultrasound to penetrate air.
We propose LUNA, an AI model that directly reconstructs lung aeration maps from RF data.
arXiv Detail & Related papers (2025-01-02T09:24:34Z) - FCDM: Sparse-view Sinogram Inpainting with Frequency Domain Convolution Enhanced Diffusion Models [14.043383277622874]
We introduce a novel diffusion-based inpainting framework tailored for sinogram data.
FCDM significantly outperforms existing methods, achieving SSIM over 0.95 and PSNR above 30 dB, with improvements of up to 33% in SSIM and 29% in PSNR compared to baselines.
arXiv Detail & Related papers (2024-08-26T12:31:38Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - Full-resolution Lung Nodule Segmentation from Chest X-ray Images using
Residual Encoder-Decoder Networks [21.724154440093216]
Lung cancer is the leading cause of cancer death and early diagnosis is associated with a positive prognosis.
Computer vision has previously been proposed to assist human radiologists in this task.
This study localizes lung nodules using efficient encoder-decoder neural networks.
arXiv Detail & Related papers (2023-07-13T04:05:39Z) - Imbalanced Aircraft Data Anomaly Detection [103.01418862972564]
Anomaly detection in temporal data from sensors under aviation scenarios is a practical but challenging task.
We propose a Graphical Temporal Data Analysis framework.
It consists three modules, named Series-to-Image (S2I), Cluster-based Resampling Approach using Euclidean Distance (CRD) and Variance-Based Loss (VBL)
arXiv Detail & Related papers (2023-05-17T09:37:07Z) - High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
Lung cancer has been one of the leading causes of cancer-related deaths worldwide for years.
Deep learning, computer-assisted diagnosis (CAD) models based on learning algorithms can accelerate the screening process.
However, developing robust and accurate models often requires large-scale and diverse medical datasets with high-quality annotations.
arXiv Detail & Related papers (2023-05-02T01:04:22Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
Early detection of lung nodules with computed tomography (CT) is critical for the longer survival of lung cancer patients and better quality of life.
Computer-aided detection/diagnosis (CAD) is proven valuable as a second or concurrent reader in this context.
accurate detection of lung nodules remains a challenge for such CAD systems and even radiologists due to variability in size, location, and appearance of lung nodules.
Motivated by recent computer vision techniques, here we present a self-supervised region-based 3D transformer model to identify lung nodules.
arXiv Detail & Related papers (2022-04-30T01:19:00Z) - Debiasing pipeline improves deep learning model generalization for X-ray
based lung nodule detection [11.228544549618068]
Lung cancer is the leading cause of cancer death worldwide and a good prognosis depends on early diagnosis.
We show that an image pre-processing pipeline that homogenizes and debiases chest X-ray images can improve both internal classification and external generalization.
An evolutionary pruning mechanism is used to train a nodule detection deep learning model on the most informative images from a publicly available lung nodule X-ray dataset.
arXiv Detail & Related papers (2022-01-24T10:08:07Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.