Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection
- URL: http://arxiv.org/abs/2205.00122v1
- Date: Sat, 30 Apr 2022 01:19:00 GMT
- Title: Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection
- Authors: Chuang Niu and Ge Wang
- Abstract summary: Early detection of lung nodules with computed tomography (CT) is critical for the longer survival of lung cancer patients and better quality of life.
Computer-aided detection/diagnosis (CAD) is proven valuable as a second or concurrent reader in this context.
accurate detection of lung nodules remains a challenge for such CAD systems and even radiologists due to variability in size, location, and appearance of lung nodules.
Motivated by recent computer vision techniques, here we present a self-supervised region-based 3D transformer model to identify lung nodules.
- Score: 6.693379403133435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early detection of lung nodules with computed tomography (CT) is critical for
the longer survival of lung cancer patients and better quality of life.
Computer-aided detection/diagnosis (CAD) is proven valuable as a second or
concurrent reader in this context. However, accurate detection of lung nodules
remains a challenge for such CAD systems and even radiologists due to not only
the variability in size, location, and appearance of lung nodules but also the
complexity of lung structures. This leads to a high false-positive rate with
CAD, compromising its clinical efficacy. Motivated by recent computer vision
techniques, here we present a self-supervised region-based 3D transformer model
to identify lung nodules among a set of candidate regions. Specifically, a 3D
vision transformer (ViT) is developed that divides a CT image volume into a
sequence of non-overlap cubes, extracts embedding features from each cube with
an embedding layer, and analyzes all embedding features with a self-attention
mechanism for the prediction. To effectively train the transformer model on a
relatively small dataset, the region-based contrastive learning method is used
to boost the performance by pre-training the 3D transformer with public CT
images. Our experiments show that the proposed method can significantly improve
the performance of lung nodule screening in comparison with the commonly used
3D convolutional neural networks.
Related papers
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - High-Fidelity 3D Lung CT Synthesis in ARDS Swine Models Using Score-Based 3D Residual Diffusion Models [13.79974752491887]
Acute respiratory distress syndrome (ARDS) is a severe condition characterized by lung inflammation and respiratory failure, with a high mortality rate of approximately 40%.
Traditional imaging methods, such as chest X-rays, provide only two-dimensional views, limiting their effectiveness in fully assessing lung pathology.
This study synthesizes high-fidelity 3D lung CT from 2D generated X-ray images with associated physiological parameters using a score-based 3D residual diffusion model.
arXiv Detail & Related papers (2024-09-26T18:22:34Z) - Diff3Dformer: Leveraging Slice Sequence Diffusion for Enhanced 3D CT Classification with Transformer Networks [5.806035963947936]
We propose a Diffusion-based 3D Vision Transformer (Diff3Dformer) to aggregate repetitive information within 3D CT scans.
Our method exhibits improved performance on two different scales of small datasets of 3D lung CT scans.
arXiv Detail & Related papers (2024-06-24T23:23:18Z) - Application of Computer Deep Learning Model in Diagnosis of Pulmonary Nodules [5.058992545593932]
The 3D simulation model of the lung was established by using the reconstruction method.
A computer aided pulmonary nodule detection model was constructed.
The recognition rate was significantly improved compared to conventional diagnostic methods.
arXiv Detail & Related papers (2024-06-19T04:27:27Z) - Robust deep labeling of radiological emphysema subtypes using squeeze
and excitation convolutional neural networks: The MESA Lung and SPIROMICS
Studies [34.200556207264974]
Pulmonary emphysema is the progressive, irreversible loss of lung tissue.
Recent work has led to the unsupervised learning of ten spatially-informed lung texture patterns (ss) on lung CT.
We present a robust 3-D squeeze-and-excitation model for supervised classification of ss CNNs and CTES on lung CT.
arXiv Detail & Related papers (2024-03-01T03:45:56Z) - Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
We present an innovative model that harnesses the strengths of both convolutional neural networks and vision transformers.
Inspired by object detection in videos, we treat each 3D CT image as a video, individual slices as frames, and lung nodules as objects, enabling a time-series application.
arXiv Detail & Related papers (2023-10-05T07:48:55Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
We propose a novel view-disentangled transformer to enhance the extraction of MRI features for more accurate tumour detection.
First, the proposed transformer harvests long-range correlation among different positions in a 3D brain scan.
Second, the transformer models a stack of slice features as multiple 2D views and enhance these features view-by-view.
Third, we deploy the proposed transformer module in a transformer backbone, which can effectively detect the 2D regions surrounding brain lesions.
arXiv Detail & Related papers (2022-09-20T11:58:23Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.