Efficient Homomorphically Encrypted Convolutional Neural Network Without Rotation
- URL: http://arxiv.org/abs/2409.05205v1
- Date: Sun, 8 Sep 2024 19:46:25 GMT
- Title: Efficient Homomorphically Encrypted Convolutional Neural Network Without Rotation
- Authors: Sajjad Akherati, Xinmiao Zhang,
- Abstract summary: This paper proposes a novel reformulated joint procedure and a new filter coefficient packing scheme to eliminate ciphertext rotations without affecting the security of the HE scheme.
For various plain-20s over the CIFAR-10/100 datasets, our design reduces the running time of the Conv and FC layers by 15.5% and the communication cost between client and server by more than 50%, compared to the best prior design.
- Score: 6.03124479597323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Privacy-preserving neural network (NN) inference can be achieved by utilizing homomorphic encryption (HE), which allows computations to be directly carried out over ciphertexts. Popular HE schemes are built over large polynomial rings. To allow simultaneous multiplications in the convolutional (Conv) and fully-connected (FC) layers, multiple input data are mapped to coefficients in the same polynomial, so are the weights of NNs. However, ciphertext rotations are necessary to compute the sums of products and/or incorporate the outputs of different channels into the same polynomials. Ciphertext rotations have much higher complexity than ciphertext multiplications and contribute to the majority of the latency of HE-evaluated Conv and FC layers. This paper proposes a novel reformulated server-client joint computation procedure and a new filter coefficient packing scheme to eliminate ciphertext rotations without affecting the security of the HE scheme. Our proposed scheme also leads to substantial reductions on the number of coefficient multiplications needed and the communication cost between the server and client. For various plain-20 classifiers over the CIFAR-10/100 datasets, our design reduces the running time of the Conv and FC layers by 15.5% and the communication cost between client and server by more than 50%, compared to the best prior design.
Related papers
- Three-Input Ciphertext Multiplication for Homomorphic Encryption [6.390468088226496]
Homomorphic encryption (HE) allows computations directly on ciphertexts.
HE is essential to privacy-preserving computing, such as neural network inference, medical diagnosis, and financial data analysis.
This paper proposes 3-input ciphertext multiplication to reduce complexity of computations.
arXiv Detail & Related papers (2024-10-17T13:40:49Z) - CryptoTrain: Fast Secure Training on Encrypted Dataset [17.23344104239024]
We develop a hybrid cryptographic protocol that merges Homomorphic Encryption with Oblivious Transfer (OT) for handling linear and non-linear operations.
By integrating CCMul-Precompute and correlated convolution into CryptoTrain-B, we facilitate a rapid and efficient secure training framework.
arXiv Detail & Related papers (2024-09-25T07:06:14Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - Efficient Privacy-Preserving Convolutional Spiking Neural Networks with
FHE [1.437446768735628]
Homomorphic Encryption (FHE) is a key technology for privacy-preserving computation.
FHE has limitations in processing continuous non-polynomial functions.
We present a framework called FHE-DiCSNN for homomorphic SNNs.
FHE-DiCSNN achieves an accuracy of 97.94% on ciphertexts, with a loss of only 0.53% compared to the original network's accuracy of 98.47%.
arXiv Detail & Related papers (2023-09-16T15:37:18Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - THE-X: Privacy-Preserving Transformer Inference with Homomorphic
Encryption [112.02441503951297]
Privacy-preserving inference of transformer models is on the demand of cloud service users.
We introduce $textitTHE-X$, an approximation approach for transformers, which enables privacy-preserving inference of pre-trained models.
arXiv Detail & Related papers (2022-06-01T03:49:18Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - HD-cos Networks: Efficient Neural Architectures for Secure Multi-Party
Computation [26.67099154998755]
Multi-party computation (MPC) is a branch of cryptography where multiple non-colluding parties execute a protocol to securely compute a function.
We study training and inference of neural networks under the MPC setup.
We show that both of the approaches enjoy strong theoretical motivations and efficient computation under the MPC setup.
arXiv Detail & Related papers (2021-10-28T21:15:11Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - FFConv: Fast Factorized Neural Network Inference on Encrypted Data [9.868787266501036]
We propose a low-rank factorization method called FFConv to unify convolution and ciphertext packing.
Compared to prior art LoLa and Falcon, our method reduces the inference latency by up to 87% and 12%, respectively.
arXiv Detail & Related papers (2021-02-06T03:10:13Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.