SEF: A Method for Computing Prediction Intervals by Shifting the Error Function in Neural Networks
- URL: http://arxiv.org/abs/2409.05206v1
- Date: Sun, 8 Sep 2024 19:46:45 GMT
- Title: SEF: A Method for Computing Prediction Intervals by Shifting the Error Function in Neural Networks
- Authors: E. V. Aretos, D. G. Sotiropoulos,
- Abstract summary: SEF (Shifting the Error Function) method presented in this paper is a new method that belongs to this category of methods.
The proposed approach involves training a single neural network three times, thus generating an estimate along with the corresponding upper and lower bounds for a given problem.
This innovative process effectively produces PIs, resulting in a robust and efficient technique for uncertainty quantification.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In today's era, Neural Networks (NN) are applied in various scientific fields such as robotics, medicine, engineering, etc. However, the predictions of neural networks themselves contain a degree of uncertainty that must always be taken into account before any decision is made. This is why many researchers have focused on developing different ways to quantify the uncertainty of neural network predictions. Some of these methods are based on generating prediction intervals (PI) via neural networks for the requested target values. The SEF (Shifting the Error Function) method presented in this paper is a new method that belongs to this category of methods. The proposed approach involves training a single neural network three times, thus generating an estimate along with the corresponding upper and lower bounds for a given problem. A pivotal aspect of the method is the calculation of a parameter from the initial network's estimates, which is then integrated into the loss functions of the other two networks. This innovative process effectively produces PIs, resulting in a robust and efficient technique for uncertainty quantification. To evaluate the effectiveness of our method, a comparison in terms of successful PI generation between the SEF, PI3NN and PIVEN methods was made using two synthetic datasets.
Related papers
- Error Analysis and Numerical Algorithm for PDE Approximation with Hidden-Layer Concatenated Physics Informed Neural Networks [0.9693477883827689]
We present the hidden-layerd physics informed neural network (HLConcPINN) method.
It combines hidden-layerd feed-forward neural networks, a modified block time marching strategy, and a physics informed approach for approximating partial differential equations (PDEs)
We show that its approximation error of the solution can be effectively controlled by the training loss for dynamic simulations with long time horizons.
arXiv Detail & Related papers (2024-06-10T15:12:53Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - A new approach to generalisation error of machine learning algorithms:
Estimates and convergence [0.0]
We introduce a new approach to the estimation of the (generalisation) error and to convergence.
Our results include estimates of the error without any structural assumption on the neural networks.
arXiv Detail & Related papers (2023-06-23T20:57:31Z) - Guaranteed Quantization Error Computation for Neural Network Model
Compression [2.610470075814367]
Neural network model compression techniques can address the computation issue of deep neural networks on embedded devices in industrial systems.
A merged neural network is built from a feedforward neural network and its quantized version to produce the exact output difference between two neural networks.
arXiv Detail & Related papers (2023-04-26T20:21:54Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - A copula-based visualization technique for a neural network [0.0]
Interpretability of machine learning is defined as the extent to which humans can comprehend the reason of a decision.
We propose a new algorithm that reveals which feature values the trained neural network considers important.
arXiv Detail & Related papers (2020-03-27T10:32:27Z) - Estimating Uncertainty Intervals from Collaborating Networks [15.467208581231848]
We propose a novel method to capture predictive distributions in regression by defining two neural networks with two distinct loss functions.
Specifically, one network approximates the cumulative distribution function, and the second network approximates its inverse.
We benchmark CN against several common approaches on two synthetic and six real-world datasets, including forecasting A1c values in diabetic patients from electronic health records.
arXiv Detail & Related papers (2020-02-12T20:10:27Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.