Guaranteed Quantization Error Computation for Neural Network Model
Compression
- URL: http://arxiv.org/abs/2304.13812v1
- Date: Wed, 26 Apr 2023 20:21:54 GMT
- Title: Guaranteed Quantization Error Computation for Neural Network Model
Compression
- Authors: Wesley Cooke, Zihao Mo, Weiming Xiang
- Abstract summary: Neural network model compression techniques can address the computation issue of deep neural networks on embedded devices in industrial systems.
A merged neural network is built from a feedforward neural network and its quantized version to produce the exact output difference between two neural networks.
- Score: 2.610470075814367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network model compression techniques can address the computation issue
of deep neural networks on embedded devices in industrial systems. The
guaranteed output error computation problem for neural network compression with
quantization is addressed in this paper. A merged neural network is built from
a feedforward neural network and its quantized version to produce the exact
output difference between two neural networks. Then, optimization-based methods
and reachability analysis methods are applied to the merged neural network to
compute the guaranteed quantization error. Finally, a numerical example is
proposed to validate the applicability and effectiveness of the proposed
approach.
Related papers
- Verified Neural Compressed Sensing [58.98637799432153]
We develop the first (to the best of our knowledge) provably correct neural networks for a precise computational task.
We show that for modest problem dimensions (up to 50), we can train neural networks that provably recover a sparse vector from linear and binarized linear measurements.
We show that the complexity of the network can be adapted to the problem difficulty and solve problems where traditional compressed sensing methods are not known to provably work.
arXiv Detail & Related papers (2024-05-07T12:20:12Z) - An Analytic Solution to Covariance Propagation in Neural Networks [10.013553984400488]
This paper presents a sample-free moment propagation technique to accurately characterize the input-output distributions of neural networks.
A key enabler of our technique is an analytic solution for the covariance of random variables passed through nonlinear activation functions.
The wide applicability and merits of the proposed technique are shown in experiments analyzing the input-output distributions of trained neural networks and training Bayesian neural networks.
arXiv Detail & Related papers (2024-03-24T14:08:24Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Using Cooperative Game Theory to Prune Neural Networks [7.3959659158152355]
We show how solution concepts from cooperative game theory can be used to tackle the problem of pruning neural networks.
We introduce a method called Game Theory Assisted Pruning (GTAP), which reduces the neural network's size while preserving its predictive accuracy.
arXiv Detail & Related papers (2023-11-17T11:48:10Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks.
We introduce a related embedded network and show that the embedded network can be used to provide an $ell_infty$-norm box over-approximation of the reachable sets of the original network.
We apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.
arXiv Detail & Related papers (2022-08-08T03:13:24Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - Approximate Bisimulation Relations for Neural Networks and Application
to Assured Neural Network Compression [3.0839245814393728]
We propose a concept of approximate bisimulation relation for feedforward neural networks.
A novel neural network merging method is developed to compute the approximate bisimulation error between two neural networks.
arXiv Detail & Related papers (2022-02-02T16:21:19Z) - Neuron-based Pruning of Deep Neural Networks with Better Generalization
using Kronecker Factored Curvature Approximation [18.224344440110862]
The proposed algorithm directs the parameters of the compressed model toward a flatter solution by exploring the spectral radius of Hessian.
Our result shows that it improves the state-of-the-art results on neuron compression.
The method is able to achieve very small networks with small accuracy across different neural network models.
arXiv Detail & Related papers (2021-11-16T15:55:59Z) - ResiliNet: Failure-Resilient Inference in Distributed Neural Networks [56.255913459850674]
We introduce ResiliNet, a scheme for making inference in distributed neural networks resilient to physical node failures.
Failout simulates physical node failure conditions during training using dropout, and is specifically designed to improve the resiliency of distributed neural networks.
arXiv Detail & Related papers (2020-02-18T05:58:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.