ICML Topological Deep Learning Challenge 2024: Beyond the Graph Domain
- URL: http://arxiv.org/abs/2409.05211v1
- Date: Sun, 8 Sep 2024 19:59:53 GMT
- Title: ICML Topological Deep Learning Challenge 2024: Beyond the Graph Domain
- Authors: Guillermo Bernárdez, Lev Telyatnikov, Marco Montagna, Federica Baccini, Mathilde Papillon, Miquel Ferriol-Galmés, Mustafa Hajij, Theodore Papamarkou, Maria Sofia Bucarelli, Olga Zaghen, Johan Mathe, Audun Myers, Scott Mahan, Hansen Lillemark, Sharvaree Vadgama, Erik Bekkers, Tim Doster, Tegan Emerson, Henry Kvinge, Katrina Agate, Nesreen K Ahmed, Pengfei Bai, Michael Banf, Claudio Battiloro, Maxim Beketov, Paul Bogdan, Martin Carrasco, Andrea Cavallo, Yun Young Choi, George Dasoulas, Matouš Elphick, Giordan Escalona, Dominik Filipiak, Halley Fritze, Thomas Gebhart, Manel Gil-Sorribes, Salvish Goomanee, Victor Guallar, Liliya Imasheva, Andrei Irimia, Hongwei Jin, Graham Johnson, Nikos Kanakaris, Boshko Koloski, Veljko Kovač, Manuel Lecha, Minho Lee, Pierrick Leroy, Theodore Long, German Magai, Alvaro Martinez, Marissa Masden, Sebastian Mežnar, Bertran Miquel-Oliver, Alexis Molina, Alexander Nikitin, Marco Nurisso, Matt Piekenbrock, Yu Qin, Patryk Rygiel, Alessandro Salatiello, Max Schattauer, Pavel Snopov, Julian Suk, Valentina Sánchez, Mauricio Tec, Francesco Vaccarino, Jonas Verhellen, Frederic Wantiez, Alexander Weers, Patrik Zajec, Blaž Škrlj, Nina Miolane,
- Abstract summary: The challenge focused on the problem of representing data in different discrete topological domains.
The challenge received 52 submissions satisfying all the requirements.
This paper introduces the main scope of the challenge, and summarizes the main results and findings.
- Score: 82.10943542681696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM). The challenge focused on the problem of representing data in different discrete topological domains in order to bridge the gap between Topological Deep Learning (TDL) and other types of structured datasets (e.g. point clouds, graphs). Specifically, participants were asked to design and implement topological liftings, i.e. mappings between different data structures and topological domains --like hypergraphs, or simplicial/cell/combinatorial complexes. The challenge received 52 submissions satisfying all the requirements. This paper introduces the main scope of the challenge, and summarizes the main results and findings.
Related papers
- RiTeK: A Dataset for Large Language Models Complex Reasoning over Textual Knowledge Graphs [12.846097618151951]
We develop a dataset for LLMs Complex Reasoning over Textual Knowledge Graphs (RiTeK) with a broad topological structure coverage.
We synthesize realistic user queries that integrate diverse topological structures, annotated information, and complex textual descriptions.
We introduce an enhanced Monte Carlo Tree Search (CTS) method, which automatically extracts relational path information from textual graphs for specific queries.
arXiv Detail & Related papers (2024-10-17T19:33:37Z) - Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
This paper defines upper and lower bounds for neural network widths, which are informed by the polytope structure of the dataset in question.
We develop an algorithm to investigate a converse situation where the polytope structure of a dataset can be inferred from its corresponding trained neural networks.
It is established that popular datasets such as MNIST, Fashion-MNIST, and CIFAR10 can be efficiently encapsulated using no more than two polytopes with a small number of faces.
arXiv Detail & Related papers (2024-02-04T08:57:42Z) - ICML 2023 Topological Deep Learning Challenge : Design and Results [83.5003281210199]
The competition asked participants to provide open-source implementations of topological neural networks from the literature.
The challenge attracted twenty-eight qualifying submissions in its two-month duration.
This paper describes the design of the challenge and summarizes its main findings.
arXiv Detail & Related papers (2023-09-26T18:49:30Z) - Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes [4.23480641508611]
Graph Neural Networks (GNNs) are theoretically bounded by the 1-Weisfeiler-Lehman test.
Our study presents a novel perspective by focusing on simple paths within graphs during the topological message-passing process.
arXiv Detail & Related papers (2023-08-13T19:45:20Z) - Topological Pooling on Graphs [24.584372324701885]
Graph neural networks (GNNs) have demonstrated a significant success in various graph learning tasks.
We propose a novel topological pooling layer and witness complex-based topological embedding mechanism.
We show that Wit-TopoPool significantly outperforms all competitors across all datasets.
arXiv Detail & Related papers (2023-03-25T19:30:46Z) - Topological Learning in Multi-Class Data Sets [0.3050152425444477]
We study the impact of topological complexity on learning in feedforward deep neural networks (DNNs)
We evaluate our topological classification algorithm on multiple constructed and open source data sets.
arXiv Detail & Related papers (2023-01-23T21:54:25Z) - TA-Net: Topology-Aware Network for Gland Segmentation [71.52681611057271]
We propose a novel topology-aware network (TA-Net) to accurately separate densely clustered and severely deformed glands.
TA-Net has a multitask learning architecture and enhances the generalization of gland segmentation.
It achieves state-of-the-art performance on the two datasets.
arXiv Detail & Related papers (2021-10-27T17:10:58Z) - A Survey on Heterogeneous Graph Embedding: Methods, Techniques,
Applications and Sources [79.48829365560788]
Heterogeneous graphs (HGs) also known as heterogeneous information networks have become ubiquitous in real-world scenarios.
HG embedding aims to learn representations in a lower-dimension space while preserving the heterogeneous structures and semantics for downstream tasks.
arXiv Detail & Related papers (2020-11-30T15:03:47Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.