FedFT: Improving Communication Performance for Federated Learning with Frequency Space Transformation
- URL: http://arxiv.org/abs/2409.05242v1
- Date: Sun, 8 Sep 2024 23:05:35 GMT
- Title: FedFT: Improving Communication Performance for Federated Learning with Frequency Space Transformation
- Authors: Chamath Palihawadana, Nirmalie Wiratunga, Anjana Wijekoon, Harsha Kalutarage,
- Abstract summary: We introduce FedFT (federated frequency-space transformation), a simple yet effective methodology for communicating model parameters in a Federated Learning setting.
FedFT uses Discrete Cosine Transform (DCT) to represent model parameters in frequency space, enabling efficient compression and reducing communication overhead.
We demonstrate the generalisability of the FedFT methodology on four datasets using comparative studies with three state-of-the-art FL baselines.
- Score: 0.361593752383807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Communication efficiency is a widely recognised research problem in Federated Learning (FL), with recent work focused on developing techniques for efficient compression, distribution and aggregation of model parameters between clients and the server. Particularly within distributed systems, it is important to balance the need for computational cost and communication efficiency. However, existing methods are often constrained to specific applications and are less generalisable. In this paper, we introduce FedFT (federated frequency-space transformation), a simple yet effective methodology for communicating model parameters in a FL setting. FedFT uses Discrete Cosine Transform (DCT) to represent model parameters in frequency space, enabling efficient compression and reducing communication overhead. FedFT is compatible with various existing FL methodologies and neural architectures, and its linear property eliminates the need for multiple transformations during federated aggregation. This methodology is vital for distributed solutions, tackling essential challenges like data privacy, interoperability, and energy efficiency inherent to these environments. We demonstrate the generalisability of the FedFT methodology on four datasets using comparative studies with three state-of-the-art FL baselines (FedAvg, FedProx, FedSim). Our results demonstrate that using FedFT to represent the differences in model parameters between communication rounds in frequency space results in a more compact representation compared to representing the entire model in frequency space. This leads to a reduction in communication overhead, while keeping accuracy levels comparable and in some cases even improving it. Our results suggest that this reduction can range from 5% to 30% per client, depending on dataset.
Related papers
- Communication-Efficient and Tensorized Federated Fine-Tuning of Large Language Models [24.07770417615704]
We introduce FedTT and FedTT+, methods for adapting Large Language Models.
FedTT is versatile and can be applied to both cross-silo FL and large-scale cross-device FL.
Our proposed methods successfully address data heterogeneity challenges and perform on par or even better than existing federated PEFT approaches.
arXiv Detail & Related papers (2024-10-16T23:50:39Z) - DynamicFL: Federated Learning with Dynamic Communication Resource Allocation [34.97472382870816]
Federated Learning (FL) is a collaborative machine learning framework that allows multiple users to train models utilizing their local data in a distributed manner.
We introduce DynamicFL, a new FL framework that investigates the trade-offs between global model performance and communication costs.
We show that DynamicFL surpasses current state-of-the-art methods with up to a 10% increase in model accuracy.
arXiv Detail & Related papers (2024-09-08T05:53:32Z) - Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes [54.18186259484828]
In Federated Learning (FL) paradigm, a parameter server (PS) concurrently communicates with distributed participating clients for model collection, update aggregation, and model distribution over multiple rounds.
We show strong evidences that variable-length is beneficial for compression in FL.
We present Fed-CVLC (Federated Learning Compression with Variable-Length Codes), which fine-tunes the code length in response to the dynamics of model updates.
arXiv Detail & Related papers (2024-02-06T07:25:21Z) - Parametric Feature Transfer: One-shot Federated Learning with Foundation
Models [14.97955440815159]
In one-shot federated learning, clients collaboratively train a global model in a single round of communication.
This paper introduces FedPFT, a methodology that harnesses the transferability of foundation models to enhance both accuracy and communication efficiency in one-shot FL.
arXiv Detail & Related papers (2024-02-02T19:34:46Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics
in Industrial Metaverse [49.1501082763252]
This paper presents HFEDMS for incorporating practical FL into the emerging Industrial Metaverse.
It reduces data heterogeneity through dynamic grouping and training mode conversion.
Then, it compensates for the forgotten knowledge by fusing compressed historical data semantics.
Experiments have been conducted on the streamed non-i.i.d. FEMNIST dataset using 368 simulated devices.
arXiv Detail & Related papers (2022-11-07T04:33:24Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Communication-Efficient Federated Distillation with Active Data Sampling [6.516631577963641]
Federated learning (FL) is a promising paradigm to enable privacy-preserving deep learning from distributed data.
Federated Distillation (FD) is a recently proposed alternative to enable communication-efficient and robust FL.
This paper presents a generic meta-algorithm for FD and investigate the influence of key parameters through empirical experiments.
We propose a communication-efficient FD algorithm with active data sampling to improve the model performance and reduce the communication overhead.
arXiv Detail & Related papers (2022-03-14T07:50:55Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.