Label-free evaluation of lung and heart transplant biopsies using virtual staining
- URL: http://arxiv.org/abs/2409.05255v1
- Date: Mon, 9 Sep 2024 00:18:48 GMT
- Title: Label-free evaluation of lung and heart transplant biopsies using virtual staining
- Authors: Yuzhu Li, Nir Pillar, Tairan Liu, Guangdong Ma, Yuxuan Qi, Kevin de Haan, Yijie Zhang, Xilin Yang, Adrian J. Correa, Guangqian Xiao, Kuang-Yu Jen, Kenneth A. Iczkowski, Yulun Wu, William Dean Wallace, Aydogan Ozcan,
- Abstract summary: The traditional histochemical staining process is time-consuming, costly, and labor-intensive.
We present a panel of virtual staining neural networks for lung and heart transplant biopsies.
Virtual staining networks consistently produce high-quality histology images with high color uniformity.
- Score: 3.24061990641619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Organ transplantation serves as the primary therapeutic strategy for end-stage organ failures. However, allograft rejection is a common complication of organ transplantation. Histological assessment is essential for the timely detection and diagnosis of transplant rejection and remains the gold standard. Nevertheless, the traditional histochemical staining process is time-consuming, costly, and labor-intensive. Here, we present a panel of virtual staining neural networks for lung and heart transplant biopsies, which digitally convert autofluorescence microscopic images of label-free tissue sections into their brightfield histologically stained counterparts, bypassing the traditional histochemical staining process. Specifically, we virtually generated Hematoxylin and Eosin (H&E), Masson's Trichrome (MT), and Elastic Verhoeff-Van Gieson (EVG) stains for label-free transplant lung tissue, along with H&E and MT stains for label-free transplant heart tissue. Subsequent blind evaluations conducted by three board-certified pathologists have confirmed that the virtual staining networks consistently produce high-quality histology images with high color uniformity, closely resembling their well-stained histochemical counterparts across various tissue features. The use of virtually stained images for the evaluation of transplant biopsies achieved comparable diagnostic outcomes to those obtained via traditional histochemical staining, with a concordance rate of 82.4% for lung samples and 91.7% for heart samples. Moreover, virtual staining models create multiple stains from the same autofluorescence input, eliminating structural mismatches observed between adjacent sections stained in the traditional workflow, while also saving tissue, expert time, and staining costs.
Related papers
- Autonomous Quality and Hallucination Assessment for Virtual Tissue Staining and Digital Pathology [0.11728348229595655]
We present an autonomous quality and hallucination assessment method (termed AQuA) for virtual tissue staining.
AQuA achieves 99.8% accuracy when detecting acceptable and unacceptable virtually stained tissue images.
arXiv Detail & Related papers (2024-04-29T06:32:28Z) - Virtual histological staining of unlabeled autopsy tissue [1.9351365037275405]
We show that a trained neural network can transform autofluorescence images of label-free autopsy tissue sections into brightfield equivalent images that match hematoxylin and eosin stained versions of the same samples.
Our virtual autopsy staining technique can also be extended to necrotic tissue, and can rapidly and cost-effectively generate artifact-free H&E stains despite severe autolysis and cell death.
arXiv Detail & Related papers (2023-08-02T03:31:22Z) - Digital staining in optical microscopy using deep learning -- a review [47.86254766044832]
Digital staining has emerged as a promising concept to use modern deep learning for the translation from optical contrast to established biochemical contrast of actual stainings.
We provide an in-depth analysis of the current state-of-the-art in this field, suggest methods of good practice, identify pitfalls and challenges and postulate promising advances towards potential future implementations and applications.
arXiv Detail & Related papers (2023-03-14T15:23:48Z) - Virtual stain transfer in histology via cascaded deep neural networks [2.309018557701645]
We demonstrate a virtual stain transfer framework via a cascaded deep neural network (C-DNN)
Unlike a single neural network structure which only takes one stain type as input to digitally output images of another stain type, C-DNN first uses virtual staining to transform autofluorescence microscopy images into H&E.
We successfully transferred the H&E-stained tissue images into virtual PAS (periodic acid-Schiff) stain.
arXiv Detail & Related papers (2022-07-14T00:43:18Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
We present a machine learning pipeline to segment white blood cell pixels in hyperspectral images of biopsy cores.
These cells are clinically important for diagnosis, but some prior work has struggled to incorporate them due to difficulty obtaining precise pixel labels.
arXiv Detail & Related papers (2022-03-23T00:58:27Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Deep learning-based transformation of the H&E stain into special stains [44.38127957263123]
We show the utility of supervised learning-based computational stain transformation from H&E to different special stains using tissue sections from kidney needle core biopsies.
Results: The quality of the special stains generated by the stain transformation network was statistically equivalent to those generated through standard histochemical staining.
arXiv Detail & Related papers (2020-08-20T10:12:03Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Digital synthesis of histological stains using micro-structured and
multiplexed virtual staining of label-free tissue [2.446672595462589]
We present a new deep learning-based framework which generates virtually-stained images using label-free tissue.
We trained and blindly tested this virtual-staining network using unlabeled kidney tissue sections.
arXiv Detail & Related papers (2020-01-20T22:14:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.