論文の概要: Improving Tree Probability Estimation with Stochastic Optimization and Variance Reduction
- arxiv url: http://arxiv.org/abs/2409.05282v1
- Date: Mon, 9 Sep 2024 02:22:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 16:00:52.362878
- Title: Improving Tree Probability Estimation with Stochastic Optimization and Variance Reduction
- Title(参考訳): 確率最適化と可変化による樹木確率推定の改善
- Authors: Tianyu Xie, Musu Yuan, Minghua Deng, Cheng Zhang,
- Abstract要約: サブスプリットベイズネットワーク(SBN)は木確率推定のための強力な確率的グラフィカルモデルを提供する。
現在、SBNパラメータの学習に使われている期待値(EM)法は、大きなデータセットまでスケールしない。
本稿では,SBNを学習するための計算効率のよい方法をいくつか紹介し,分散化が性能向上の鍵となることを示す。
- 参考スコア(独自算出の注目度): 11.417249588622926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probability estimation of tree topologies is one of the fundamental tasks in phylogenetic inference. The recently proposed subsplit Bayesian networks (SBNs) provide a powerful probabilistic graphical model for tree topology probability estimation by properly leveraging the hierarchical structure of phylogenetic trees. However, the expectation maximization (EM) method currently used for learning SBN parameters does not scale up to large data sets. In this paper, we introduce several computationally efficient methods for training SBNs and show that variance reduction could be the key for better performance. Furthermore, we also introduce the variance reduction technique to improve the optimization of SBN parameters for variational Bayesian phylogenetic inference (VBPI). Extensive synthetic and real data experiments demonstrate that our methods outperform previous baseline methods on the tasks of tree topology probability estimation as well as Bayesian phylogenetic inference using SBNs.
- Abstract(参考訳): 樹木トポロジーの確率推定は系統学的推論における基本的な課題の1つである。
最近提案されたサブスプリットベイズネットワーク(SBN)は、系統樹の階層構造を適切に活用することにより、木トポロジーの確率推定のための強力な確率的グラフィカルモデルを提供する。
しかし、SBNパラメータの学習に現在使われている期待最大化(EM)法は、大きなデータセットにスケールアップされない。
本稿では,SBNを学習するための計算効率のよい方法をいくつか紹介し,分散化が性能向上の鍵となることを示す。
さらに,変分ベイズ系統推定(VBPI)におけるSBNパラメータの最適化を改善するために,分散低減手法を導入する。
総合的な合成および実データ実験により,本手法は,SBNを用いたベイズ系統推定だけでなく,樹木トポロジカル推定のタスクにおいて,従来のベースライン法よりも優れていることが示された。
関連論文リスト
- Learning Deep Tree-based Retriever for Efficient Recommendation: Theory and Method [76.31185707649227]
効率的なレコメンデーションのために,Deep Tree-based Retriever (DTR)を提案する。
DTRは、トレーニングタスクを、同じレベルでツリーノード上のソフトマックスベースのマルチクラス分類としてフレーム化している。
非リーフノードのラベル付けによって引き起こされる準最適性を緩和するため、損失関数の補正法を提案する。
論文 参考訳(メタデータ) (2024-08-21T05:09:53Z) - Variational Bayesian Phylogenetic Inference with Semi-implicit Branch Length Distributions [6.553961278427792]
本稿では,グラフニューラルネットワークを用いた半単純階層分布に基づく分岐長変動後続の柔軟な系を提案する。
この構造は単純置換同変分布を出力するので、ユークリッドでない枝長空間を異なる木位相で容易に扱えることを示す。
論文 参考訳(メタデータ) (2024-08-09T13:29:08Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - Pseudo-Likelihood Inference [16.934708242852558]
Pseudo-Likelihood Inference (PLI)は、ABCに神経近似をもたらす新しい方法であり、ベイズシステムの識別に挑戦するタスクと競合する。
PLIは、勾配降下による神経後葉の最適化を可能にし、要約統計に頼らず、入力として複数の観察を可能にする。
PLIの有効性は、4つの古典的SBIベンチマークタスクと非常にダイナミックな物理システムで評価される。
論文 参考訳(メタデータ) (2023-11-28T10:17:52Z) - ARTree: A Deep Autoregressive Model for Phylogenetic Inference [6.935130578959931]
グラフニューラルネットワーク(GNN)に基づく系統推定のための深層自己回帰モデルを提案する。
本研究では,本手法の有効性と効率を,実データツリーのトポロジー密度推定と変分系統推定問題のベンチマークで実証する。
論文 参考訳(メタデータ) (2023-10-14T10:26:03Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
本稿では,系統学における2つの中核的問題に対処するための生成フローネットワーク(GFlowNets)の枠組みを紹介する。
GFlowNetsは複雑な構造をサンプリングするのに適しているため、木トポロジー上の多重モード後部分布を探索し、サンプリングするのに自然な選択である。
我々は, 実際のベンチマークデータセット上で, 様々な, 高品質な進化仮説を生成できることを実証した。
論文 参考訳(メタデータ) (2023-10-12T23:46:08Z) - Prediction Algorithms Achieving Bayesian Decision Theoretical Optimality
Based on Decision Trees as Data Observation Processes [1.2774526936067927]
本稿では,データの背後にあるデータ観測過程を表現するために木を用いる。
我々は、過度な適合に対して頑健な統計的に最適な予測を導出する。
これをマルコフ連鎖モンテカルロ法により解き、ステップサイズは木の後方分布に応じて適応的に調整される。
論文 参考訳(メタデータ) (2023-06-12T12:14:57Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - On Uncertainty Estimation by Tree-based Surrogate Models in Sequential
Model-based Optimization [13.52611859628841]
予測不確実性推定の観点から,ランダム化木の様々なアンサンブルを再検討し,その挙動について検討する。
BwO林と呼ばれる無作為な樹木のアンサンブルを構築するための新しい手法を提案する。
実験により,既存の樹木モデルに対するBwO林の有効性と性能について様々な状況で検証した。
論文 参考訳(メタデータ) (2022-02-22T04:50:37Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
ディープアンサンブルはベイズ辺化を近似する有効なメカニズムであることを示す。
また,アトラクションの流域内での辺縁化により,予測分布をさらに改善する関連手法を提案する。
論文 参考訳(メタデータ) (2020-02-20T15:13:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。