論文の概要: Towards Fast Rates for Federated and Multi-Task Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2409.05291v1
- Date: Mon, 9 Sep 2024 02:59:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 16:00:52.351657
- Title: Towards Fast Rates for Federated and Multi-Task Reinforcement Learning
- Title(参考訳): フェデレーションとマルチタスク強化学習の高速化に向けて
- Authors: Feng Zhu, Robert W. Heath Jr., Aritra Mitra,
- Abstract要約: 我々は、慎重に設計されたバイアス補正機構を備えた新しいフェデレーションポリシーアルゴリズムであるFast-FedPGを提案する。
勾配支配条件下では,本アルゴリズムは (i) 厳密な勾配で高速な線形収束を保証し, (ii) 雑音に富んだ政策勾配を持つエージェントの数に比例して線形スピードアップを楽しむサブ線形速度を保証している。
- 参考スコア(独自算出の注目度): 34.34798425737858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a setting involving $N$ agents, where each agent interacts with an environment modeled as a Markov Decision Process (MDP). The agents' MDPs differ in their reward functions, capturing heterogeneous objectives/tasks. The collective goal of the agents is to communicate intermittently via a central server to find a policy that maximizes the average of long-term cumulative rewards across environments. The limited existing work on this topic either only provide asymptotic rates, or generate biased policies, or fail to establish any benefits of collaboration. In response, we propose Fast-FedPG - a novel federated policy gradient algorithm with a carefully designed bias-correction mechanism. Under a gradient-domination condition, we prove that our algorithm guarantees (i) fast linear convergence with exact gradients, and (ii) sub-linear rates that enjoy a linear speedup w.r.t. the number of agents with noisy, truncated policy gradients. Notably, in each case, the convergence is to a globally optimal policy with no heterogeneity-induced bias. In the absence of gradient-domination, we establish convergence to a first-order stationary point at a rate that continues to benefit from collaboration.
- Abstract(参考訳): 我々は、各エージェントがマルコフ決定プロセス(MDP)としてモデル化された環境と相互作用する、$N$エージェントを含む設定を考える。
エージェントのMDPは報酬機能が異なるため、異質な目的/タスクを捕捉する。
エージェントの集合的目標は、中央サーバーを介して断続的に通信し、環境全体にわたる長期累積報酬の平均を最大化するポリシーを見つけることである。
このトピックに関する制限された既存の作業は、漸近的なレートのみを提供するか、偏見のあるポリシーを生成するか、コラボレーションのメリットを確立できないかのどちらかです。
そこで我々はFast-FedPGを提案する。Fast-FedPG - 慎重に設計されたバイアス補正機構を備えた新しいフェデレートポリシー勾配アルゴリズムである。
勾配支配条件下では,アルゴリズムが保証することを示す。
(i)厳密な勾配を持つ高速線型収束、及び
(II) 線形スピードアップを楽しむサブリニアレートは、ノイズのある、切り詰められたポリシー勾配を持つエージェントの数である。
特に、それぞれの場合において収束は、不均一性によって引き起こされる偏見のない大域的最適政策である。
勾配支配がなければ、我々はコラボレーションの恩恵を受け続けるレートで一階定常点への収束を確立する。
関連論文リスト
- Momentum for the Win: Collaborative Federated Reinforcement Learning across Heterogeneous Environments [17.995517050546244]
我々は、フェデレート強化学習(FRL)問題を探り、N$エージェントが共通の方針を、軌跡データを共有せずに共同で学習する。
平均性能関数の定常点に収束するFedSVRPG-MとFedHAPG-Mの2つのアルゴリズムを提案する。
我々のアルゴリズムはエージェント数に関して線形収束の高速化を享受しており、共通ポリシーを見つける上でのエージェント間の協調の利点を強調している。
論文 参考訳(メタデータ) (2024-05-29T20:24:42Z) - On the Global Convergence of Policy Gradient in Average Reward Markov
Decision Processes [50.68789924454235]
我々は、平均報酬マルコフ決定過程(MDP)の文脈における政策勾配の最初の有限時間大域収束解析を示す。
我々の分析によると、ポリシー勾配は、$Oleft(frac1Tright)$のサブリニアレートで最適ポリシーに収束し、$Oleft(log(T)right)$ regretに変換され、$T$は反復数を表す。
論文 参考訳(メタデータ) (2024-03-11T15:25:03Z) - Finite-Time Analysis of On-Policy Heterogeneous Federated Reinforcement Learning [8.632943870358627]
フェデレート強化学習(FRL)は、強化学習タスクのサンプル複雑性を低減するための有望なパラダイムとして登場した。
本稿では,線形関数近似を用いた新しいオンライン強化学習手法であるFedSARSAを紹介する。
我々は,FedSARSAが,不均一性のレベルに比例して,すべてのエージェントに対してほぼ最適のポリシーに収束することを示す。
論文 参考訳(メタデータ) (2024-01-27T02:43:45Z) - Federated Natural Policy Gradient and Actor Critic Methods for Multi-task Reinforcement Learning [46.28771270378047]
フェデレート強化学習(RL)は、ローカルデータトラジェクトリを共有することなく、複数の分散エージェントの協調的な意思決定を可能にする。
本研究では,環境の同じ遷移カーネルを共有しながら,各エージェントが異なるタスクに対応する個別の報酬関数を持つマルチタスク設定について考察する。
我々は、分散された方法で全てのエージェントの割引された全報酬の総和を最大化する、世界的な最適政策を学習する。
論文 参考訳(メタデータ) (2023-11-01T00:15:18Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
本稿では,各エージェントのローカルポリシーをバニラPPOと同様に更新するマルチエージェントPPOアルゴリズムを提案する。
マルコフゲームにおける標準正則条件と問題依存量により、我々のアルゴリズムはサブリニアレートで大域的最適ポリシーに収束することを示す。
論文 参考訳(メタデータ) (2023-05-08T16:20:03Z) - Federated Temporal Difference Learning with Linear Function Approximation under Environmental Heterogeneity [44.2308932471393]
モデル推定の交換により,エージェント数の線形収束速度が向上することを示す。
低ヘテロジニティ系では、モデル推定を交換すると、エージェントの数で線形収束速度が向上する。
論文 参考訳(メタデータ) (2023-02-04T17:53:55Z) - MDPGT: Momentum-based Decentralized Policy Gradient Tracking [29.22173174168708]
マルチエージェント強化学習のための運動量に基づく分散型ポリシー勾配追跡(MDPGT)を提案する。
MDPGTは、グローバル平均の$N$ローカルパフォーマンス関数の$epsilon-stationaryポイントに収束するために$mathcalO(N-1epsilon-3)$の最良のサンプル複雑性を実現する。
これは、分散モデルレス強化学習における最先端のサンプル複雑さよりも優れています。
論文 参考訳(メタデータ) (2021-12-06T06:55:51Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
本研究では,コミュニケーション制約下での運用を目的とした適応型分散学習戦略について検討する。
我々は,ストリーミングデータの連続的な観察から,オンライン最適化問題を解決しなければならないエージェントのネットワークを考える。
論文 参考訳(メタデータ) (2021-12-03T19:23:48Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
本研究は,リスクに敏感な深層強化学習を,分散リスク基準による平均報酬条件下で研究する試みである。
本稿では,ポリシー,ラグランジュ乗算器,フェンシェル双対変数を反復的かつ効率的に更新するアクタ批判アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T05:02:26Z) - Multi-agent Policy Optimization with Approximatively Synchronous
Advantage Estimation [55.96893934962757]
マルチエージェントシステムでは、異なるエージェントの警察を共同で評価する必要がある。
現在の方法では、バリュー関数やアドバンテージ関数は非同期に評価される対実関節アクションを使用する。
本研究では,近似的に同期する利点推定を提案する。
論文 参考訳(メタデータ) (2020-12-07T07:29:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。