From Words to Poses: Enhancing Novel Object Pose Estimation with Vision Language Models
- URL: http://arxiv.org/abs/2409.05413v1
- Date: Mon, 9 Sep 2024 08:15:39 GMT
- Title: From Words to Poses: Enhancing Novel Object Pose Estimation with Vision Language Models
- Authors: Tessa Pulli, Stefan Thalhammer, Simon Schwaiger, Markus Vincze,
- Abstract summary: vision language models (VLMs) have shown considerable advances in robotics applications.
We take advantage of VLMs zero-shot capabilities and translate this ability to 6D object pose estimation.
We propose a novel framework for promptable zero-shot 6D object pose estimation using language embeddings.
- Score: 7.949705607963995
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robots are increasingly envisioned to interact in real-world scenarios, where they must continuously adapt to new situations. To detect and grasp novel objects, zero-shot pose estimators determine poses without prior knowledge. Recently, vision language models (VLMs) have shown considerable advances in robotics applications by establishing an understanding between language input and image input. In our work, we take advantage of VLMs zero-shot capabilities and translate this ability to 6D object pose estimation. We propose a novel framework for promptable zero-shot 6D object pose estimation using language embeddings. The idea is to derive a coarse location of an object based on the relevancy map of a language-embedded NeRF reconstruction and to compute the pose estimate with a point cloud registration method. Additionally, we provide an analysis of LERF's suitability for open-set object pose estimation. We examine hyperparameters, such as activation thresholds for relevancy maps and investigate the zero-shot capabilities on an instance- and category-level. Furthermore, we plan to conduct robotic grasping experiments in a real-world setting.
Related papers
- Structured Spatial Reasoning with Open Vocabulary Object Detectors [2.089191490381739]
Reasoning about spatial relationships between objects is essential for many real-world robotic tasks.
We introduce a structured probabilistic approach that integrates rich 3D geometric features with state-of-the-art open-vocabulary object detectors.
The approach is evaluated and compared against zero-shot performance of the state-of-the-art Vision and Language Models (VLMs) on spatial reasoning tasks.
arXiv Detail & Related papers (2024-10-09T19:37:01Z) - Stimulating Imagination: Towards General-purpose Object Rearrangement [2.0885207827639785]
General-purpose object placement is a fundamental capability of intelligent robots.
We propose a framework named SPORT to accomplish this task.
Sport learns a diffusion-based 3D pose estimator to ensure physically-realistic results.
A set of simulation and real-world experiments demonstrate the potential of our approach to accomplish general-purpose object rearrangement.
arXiv Detail & Related papers (2024-08-03T03:53:05Z) - LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
We focus on object pose estimation.
Our approach relies on three pieces of information: multiple views of the object, the camera's parameters at those viewpoints, and 3D CAD models of objects.
We show that the estimated object pose results in 99.65% grasp accuracy with the ground truth grasp candidates.
arXiv Detail & Related papers (2023-11-14T14:27:53Z) - RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic
Control [140.48218261864153]
We study how vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control.
Our approach leads to performant robotic policies and enables RT-2 to obtain a range of emergent capabilities from Internet-scale training.
arXiv Detail & Related papers (2023-07-28T21:18:02Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
"Hypothesize, Simulate, Act, Update, and Repeat" (H-SAUR) is a probabilistic generative framework that generates hypotheses about how objects articulate given input observations.
We show that the proposed model significantly outperforms the current state-of-the-art articulated object manipulation framework.
We further improve the test-time efficiency of H-SAUR by integrating a learned prior from learning-based vision models.
arXiv Detail & Related papers (2022-10-22T18:39:33Z) - Learning 6-DoF Object Poses to Grasp Category-level Objects by Language
Instructions [74.63313641583602]
This paper studies the task of any objects grasping from the known categories by free-form language instructions.
We bring these disciplines together on this open challenge, which is essential to human-robot interaction.
We propose a language-guided 6-DoF category-level object localization model to achieve robotic grasping by comprehending human intention.
arXiv Detail & Related papers (2022-05-09T04:25:14Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
Training agents to manipulate objects, poses many challenges.
We propose an approach that explores the environment in search for target objects, computes their 3D coordinates once they are located, and then continues to estimate their 3D locations even when the objects are not visible.
Our evaluations show a massive 3x improvement in success rate over a model that has access to the same sensory suite.
arXiv Detail & Related papers (2022-03-15T17:59:01Z) - 6-DoF Pose Estimation of Household Objects for Robotic Manipulation: An
Accessible Dataset and Benchmark [17.493403705281008]
We present a new dataset for 6-DoF pose estimation of known objects, with a focus on robotic manipulation research.
We provide 3D scanned textured models of toy grocery objects, as well as RGBD images of the objects in challenging, cluttered scenes.
Using semi-automated RGBD-to-model texture correspondences, the images are annotated with ground truth poses that were verified empirically to be accurate to within a few millimeters.
We also propose a new pose evaluation metric called ADD-H based upon the Hungarian assignment algorithm that is robust to symmetries in object geometry without requiring their explicit enumeration.
arXiv Detail & Related papers (2022-03-11T01:19:04Z) - INVIGORATE: Interactive Visual Grounding and Grasping in Clutter [56.00554240240515]
INVIGORATE is a robot system that interacts with human through natural language and grasps a specified object in clutter.
We train separate neural networks for object detection, for visual grounding, for question generation, and for OBR detection and grasping.
We build a partially observable Markov decision process (POMDP) that integrates the learned neural network modules.
arXiv Detail & Related papers (2021-08-25T07:35:21Z) - LanguageRefer: Spatial-Language Model for 3D Visual Grounding [72.7618059299306]
We develop a spatial-language model for a 3D visual grounding problem.
We show that our model performs competitively on visio-linguistic datasets proposed by ReferIt3D.
arXiv Detail & Related papers (2021-07-07T18:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.