6-DoF Pose Estimation of Household Objects for Robotic Manipulation: An
Accessible Dataset and Benchmark
- URL: http://arxiv.org/abs/2203.05701v1
- Date: Fri, 11 Mar 2022 01:19:04 GMT
- Title: 6-DoF Pose Estimation of Household Objects for Robotic Manipulation: An
Accessible Dataset and Benchmark
- Authors: Stephen Tyree, Jonathan Tremblay, Thang To, Jia Cheng, Terry Mosier,
Jeffrey Smith, Stan Birchfield
- Abstract summary: We present a new dataset for 6-DoF pose estimation of known objects, with a focus on robotic manipulation research.
We provide 3D scanned textured models of toy grocery objects, as well as RGBD images of the objects in challenging, cluttered scenes.
Using semi-automated RGBD-to-model texture correspondences, the images are annotated with ground truth poses that were verified empirically to be accurate to within a few millimeters.
We also propose a new pose evaluation metric called ADD-H based upon the Hungarian assignment algorithm that is robust to symmetries in object geometry without requiring their explicit enumeration.
- Score: 17.493403705281008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new dataset for 6-DoF pose estimation of known objects, with a
focus on robotic manipulation research. We propose a set of toy grocery
objects, whose physical instantiations are readily available for purchase and
are appropriately sized for robotic grasping and manipulation. We provide 3D
scanned textured models of these objects, suitable for generating synthetic
training data, as well as RGBD images of the objects in challenging, cluttered
scenes exhibiting partial occlusion, extreme lighting variations, multiple
instances per image, and a large variety of poses. Using semi-automated
RGBD-to-model texture correspondences, the images are annotated with ground
truth poses that were verified empirically to be accurate to within a few
millimeters. We also propose a new pose evaluation metric called {ADD-H} based
upon the Hungarian assignment algorithm that is robust to symmetries in object
geometry without requiring their explicit enumeration. We share pre-trained
pose estimators for all the toy grocery objects, along with their baseline
performance on both validation and test sets. We offer this dataset to the
community to help connect the efforts of computer vision researchers with the
needs of roboticists.
Related papers
- 3D Foundation Models Enable Simultaneous Geometry and Pose Estimation of Grasped Objects [13.58353565350936]
We contribute methodology to jointly estimate the geometry and pose of objects grasped by a robot.
Our method transforms the estimated geometry into the robot's coordinate frame.
We empirically evaluate our approach on a robot manipulator holding a diverse set of real-world objects.
arXiv Detail & Related papers (2024-07-14T21:02:55Z) - ManiPose: A Comprehensive Benchmark for Pose-aware Object Manipulation in Robotics [55.85916671269219]
This paper introduces ManiPose, a pioneering benchmark designed to advance the study of pose-varying manipulation tasks.
A comprehensive dataset features geometrically consistent and manipulation-oriented 6D pose labels for 2936 real-world scanned rigid objects and 100 articulated objects.
Our benchmark demonstrates notable advancements in pose estimation, pose-aware manipulation, and real-robot skill transfer.
arXiv Detail & Related papers (2024-03-20T07:48:32Z) - Fit-NGP: Fitting Object Models to Neural Graphics Primitives [19.513102875891775]
We show that the density field created by a state-of-the-art efficient radiance field reconstruction method is suitable for highly accurate pose estimation.
We present a fully automatic object pose estimation system based on a robot arm with a single wrist-mounted camera.
arXiv Detail & Related papers (2024-01-04T16:57:56Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPose is a method to estimate the 6D pose of novel objects, that is, objects unseen during training.
We present a 6D pose refiner based on a render&compare strategy which can be applied to novel objects.
Second, we introduce a novel approach for coarse pose estimation which leverages a network trained to classify whether the pose error between a synthetic rendering and an observed image of the same object can be corrected by the refiner.
arXiv Detail & Related papers (2022-12-13T19:30:03Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - Supervised Training of Dense Object Nets using Optimal Descriptors for
Industrial Robotic Applications [57.87136703404356]
Dense Object Nets (DONs) by Florence, Manuelli and Tedrake introduced dense object descriptors as a novel visual object representation for the robotics community.
In this paper we show that given a 3D model of an object, we can generate its descriptor space image, which allows for supervised training of DONs.
We compare the training methods on generating 6D grasps for industrial objects and show that our novel supervised training approach improves the pick-and-place performance in industry-relevant tasks.
arXiv Detail & Related papers (2021-02-16T11:40:12Z) - Nothing But Geometric Constraints: A Model-Free Method for Articulated
Object Pose Estimation [89.82169646672872]
We propose an unsupervised vision-based system to estimate the joint configurations of the robot arm from a sequence of RGB or RGB-D images without knowing the model a priori.
We combine a classical geometric formulation with deep learning and extend the use of epipolar multi-rigid-body constraints to solve this task.
arXiv Detail & Related papers (2020-11-30T20:46:48Z) - MoreFusion: Multi-object Reasoning for 6D Pose Estimation from
Volumetric Fusion [19.034317851914725]
We present a system which can estimate the accurate poses of multiple known objects in contact and occlusion from real-time, embodied multi-view vision.
Our approach makes 3D object pose proposals from single RGB-D views, accumulates pose estimates and non-parametric occupancy information from multiple views as the camera moves.
We verify the accuracy and robustness of our approach experimentally on 2 object datasets: YCB-Video, and our own challenging Cluttered YCB-Video.
arXiv Detail & Related papers (2020-04-09T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.