Optimal Projections for Classification with Naive Bayes
- URL: http://arxiv.org/abs/2409.05635v1
- Date: Mon, 9 Sep 2024 14:05:30 GMT
- Title: Optimal Projections for Classification with Naive Bayes
- Authors: David P. Hofmeyr, Francois Kamper, Michail M. Melonas,
- Abstract summary: We study the problem of obtaining an alternative basis for the factorisation of class conditional densities.
We formulate the problem as a projection pursuit to find the optimal linear projection on which to perform classification.
We find that the proposed approach substantially outperforms other popular probabilistic discriminant analysis models.
- Score: 5.953513005270837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the Naive Bayes classification model the class conditional densities are estimated as the products of their marginal densities along the cardinal basis directions. We study the problem of obtaining an alternative basis for this factorisation with the objective of enhancing the discriminatory power of the associated classification model. We formulate the problem as a projection pursuit to find the optimal linear projection on which to perform classification. Optimality is determined based on the multinomial likelihood within which probabilities are estimated using the Naive Bayes factorisation of the projected data. Projection pursuit offers the added benefits of dimension reduction and visualisation. We discuss an intuitive connection with class conditional independent components analysis, and show how this is realised visually in practical applications. The performance of the resulting classification models is investigated using a large collection of (162) publicly available benchmark data sets and in comparison with relevant alternatives. We find that the proposed approach substantially outperforms other popular probabilistic discriminant analysis models and is highly competitive with Support Vector Machines.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Deep Neural Network Benchmarks for Selective Classification [27.098996474946446]
Multiple selective classification frameworks exist, most of which rely on deep neural network architectures.
We evaluate these approaches using several criteria, including selective error rate, empirical coverage, distribution of rejected instance's classes, and performance on out-of-distribution instances.
arXiv Detail & Related papers (2024-01-23T12:15:47Z) - Characterizing the Optimal 0-1 Loss for Multi-class Classification with
a Test-time Attacker [57.49330031751386]
We find achievable information-theoretic lower bounds on loss in the presence of a test-time attacker for multi-class classifiers on any discrete dataset.
We provide a general framework for finding the optimal 0-1 loss that revolves around the construction of a conflict hypergraph from the data and adversarial constraints.
arXiv Detail & Related papers (2023-02-21T15:17:13Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Classification via score-based generative modelling [0.0]
We investigated the application of score-based learning in discriminative and generative classification settings.
We performed experiments on simulated and real-world datasets, demonstrating its effectiveness in achieving and improving binary classification performance.
arXiv Detail & Related papers (2022-07-22T13:59:43Z) - Beyond Adult and COMPAS: Fairness in Multi-Class Prediction [8.405162568925405]
We formulate this problem in terms of "projecting" a pre-trained (and potentially unfair) classifier onto the set of models that satisfy target group-fairness requirements.
We provide a parallelizable iterative algorithm for computing the projected classifier and derive both sample complexity and convergence guarantees.
We also evaluate our method at scale on an open dataset with multiple classes, multiple intersectional protected groups, and over 1M samples.
arXiv Detail & Related papers (2022-06-15T20:29:33Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
We introduce Classification with Alternating Normalization (CAN), a non-parametric post-processing step for classification.
CAN improves classification accuracy for challenging examples by re-adjusting their predicted class probability distribution.
We empirically demonstrate its effectiveness across a diverse set of classification tasks.
arXiv Detail & Related papers (2021-09-28T02:55:42Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Unbiased Subdata Selection for Fair Classification: A Unified Framework
and Scalable Algorithms [0.8376091455761261]
We show that many classification models within this framework can be recast as mixed-integer convex programs.
We then show that in the proposed problem, when the classification outcomes, "unsolvable subdata selection," is strongly-solvable.
This motivates us to develop an iterative refining strategy (IRS) to solve the classification instances.
arXiv Detail & Related papers (2020-12-22T21:09:38Z) - Robust Bayesian Classification Using an Optimistic Score Ratio [18.047694351309204]
We use an optimistic score ratio for robust binary classification when there is limited information on the class-conditional, or contextual, distribution.
The optimistic score searches for the distribution that is most plausible to explain the observed outcomes in the testing sample.
arXiv Detail & Related papers (2020-07-08T22:25:29Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.