Replay Consolidation with Label Propagation for Continual Object Detection
- URL: http://arxiv.org/abs/2409.05650v1
- Date: Mon, 9 Sep 2024 14:16:27 GMT
- Title: Replay Consolidation with Label Propagation for Continual Object Detection
- Authors: Riccardo De Monte, Davide Dalle Pezze, Marina Ceccon, Francesco Pasti, Francesco Paissan, Elisabetta Farella, Gian Antonio Susto, Nicola Bellotto,
- Abstract summary: Continual Learning for Object Detection poses additional difficulties compared to CL for Classification.
In CLOD, images from previous tasks may contain unknown classes that could reappear labeled in future tasks.
We propose a novel technique to solve CLOD called Replay Consolidation with Label Propagation for Object Detection.
- Score: 7.454468349023651
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object Detection is a highly relevant computer vision problem with many applications such as robotics and autonomous driving. Continual Learning~(CL) considers a setting where a model incrementally learns new information while retaining previously acquired knowledge. This is particularly challenging since Deep Learning models tend to catastrophically forget old knowledge while training on new data. In particular, Continual Learning for Object Detection~(CLOD) poses additional difficulties compared to CL for Classification. In CLOD, images from previous tasks may contain unknown classes that could reappear labeled in future tasks. These missing annotations cause task interference issues for replay-based approaches. As a result, most works in the literature have focused on distillation-based approaches. However, these approaches are effective only when there is a strong overlap of classes across tasks. To address the issues of current methodologies, we propose a novel technique to solve CLOD called Replay Consolidation with Label Propagation for Object Detection (RCLPOD). Based on the replay method, our solution avoids task interference issues by enhancing the buffer memory samples. Our method is evaluated against existing techniques in CLOD literature, demonstrating its superior performance on established benchmarks like VOC and COCO.
Related papers
- Reducing Catastrophic Forgetting in Online Class Incremental Learning Using Self-Distillation [3.8506666685467343]
In continual learning, previous knowledge is forgotten when a model learns new tasks.
In this paper, we tried to solve this problem by acquiring transferable knowledge through self-distillation.
Our proposed method outperformed conventional methods by experiments on CIFAR10, CIFAR100, and MiniimageNet datasets.
arXiv Detail & Related papers (2024-09-17T16:26:33Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Dealing with Cross-Task Class Discrimination in Online Continual
Learning [54.31411109376545]
This paper argues for another challenge in class-incremental learning (CIL)
How to establish decision boundaries between the classes of the new task and old tasks with no (or limited) access to the old task data.
A replay method saves a small amount of data (replay data) from previous tasks. When a batch of current task data arrives, the system jointly trains the new data and some sampled replay data.
This paper argues that the replay approach also has a dynamic training bias issue which reduces the effectiveness of the replay data in solving the CTCD problem.
arXiv Detail & Related papers (2023-05-24T02:52:30Z) - ReAct: Temporal Action Detection with Relational Queries [84.76646044604055]
This work aims at advancing temporal action detection (TAD) using an encoder-decoder framework with action queries.
We first propose a relational attention mechanism in the decoder, which guides the attention among queries based on their relations.
Lastly, we propose to predict the localization quality of each action query at inference in order to distinguish high-quality queries.
arXiv Detail & Related papers (2022-07-14T17:46:37Z) - vCLIMB: A Novel Video Class Incremental Learning Benchmark [53.90485760679411]
We introduce vCLIMB, a novel video continual learning benchmark.
vCLIMB is a standardized test-bed to analyze catastrophic forgetting of deep models in video continual learning.
We propose a temporal consistency regularization that can be applied on top of memory-based continual learning methods.
arXiv Detail & Related papers (2022-01-23T22:14:17Z) - Distilling Knowledge from Refinement in Multiple Instance Detection
Networks [0.0]
Weakly supervised object detection (WSOD) aims to tackle the object detection problem using only labeled image categories as supervision.
We present an adaptive supervision aggregation function that dynamically changes the aggregation criteria for selecting boxes related to one of the ground-truth classes, background, or even ignored during the generation of each refinement module supervision.
arXiv Detail & Related papers (2020-04-23T02:49:40Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.