Quantum Keyless Private Communication with Decoy States for Space Channels
- URL: http://arxiv.org/abs/2409.05694v1
- Date: Mon, 9 Sep 2024 15:09:01 GMT
- Title: Quantum Keyless Private Communication with Decoy States for Space Channels
- Authors: Angeles Vazquez-Castro, Andreas Winter, Hugo Zbinden,
- Abstract summary: We present the security analysis of a keyless quantum private communication protocol that transmits classical information over quantum states.
Our protocol sends dummy (decoy) states optimally obtained from the true information to deceive the eavesdropper.
Our protocol can be implemented with the state of the art space proof technology.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing demand for secure communication in optical space networks, it is essential to develop physical-layer scalable security solutions. In this context, we present the asymptotic security analysis of a keyless quantum private communication protocol that transmits classical information over quantum states. Different from the previous literature, our protocol sends dummy (decoy) states optimally obtained from the true information to deceive the eavesdropper. We analyze optical on-off keying (OOK) and binary phase shift keying (BPSK) for several detection scenarios. Our protocol significantly improves the protocol without decoy states whenever Bob is at a technological disadvantage with respect to Eve. Our protocol guarantees positive secrecy capacity when the eavesdropper gathers up to $90-99.9\%$ (depending on the detection scenario) of the photon energy that Bob detects, even when Eve is only limited by the laws of quantum mechanics. We apply our results to the design of an optical inter-satellite link (ISL) study case with pointing losses, and introduce a new design methodology whereby the link margin is guaranteed to be secure by our protocol. Hence, our design does not require knowing thr location of the eavesdropper and or channel state: the protocol aborts whenever the channel drops below the secured margin. Our protocol can be implemented with the state of the art space proof technology. Finally, we also show the potential secrecy advantage when using (not yet available) squeezed quantum states technology.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - A Secure Quantum Key Distribution Protocol Using Two-Particle Transmission [0.0]
Unextendible Product Bases (UPBs) hold promise in quantum cryptography due to their inherent indistinguishability.
This work introduces a protocol utilizing UPBs to establish quantum keys between distant parties.
arXiv Detail & Related papers (2024-03-20T14:33:17Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Use of Non-Maximal entangled state for free space BBM92 quantum key
distribution protocol [1.4177373944288099]
Satellite-based quantum communication for secure key distribution is becoming a more demanding field of research due to its unbreakable security.
In entanglement-based protocols such as BB84 consider the satellite as a trusted device, fraught with danger.
BBM92 protocol will be more beneficial for key distribution as we found a linear connection between the extent of violation for Bell-CHSH inequality and the quantum bit error rate for a given setup.
arXiv Detail & Related papers (2023-07-05T09:45:00Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Breaking universal limitations on quantum conference key agreement
without quantum memory [6.300599548850421]
We report a measurement-device-independent quantum conference key agreement protocol with enhanced transmission efficiency over lossy channel.
Our protocol can break key rate bounds on quantum communication over quantum network without quantum memory.
Based on our results, we anticipate that our protocol will play an indispensable role in constructing multipartite quantum network.
arXiv Detail & Related papers (2022-12-10T06:37:53Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Quantum Keyless Privacy vs. Quantum Key Distribution for Space Links [0.0]
We study information theoretical security for space links between a satellite and a ground-station.
We demonstrate information theoretical secure communication rates (positive keyless private capacity) over a classical-quantum wiretap channel.
arXiv Detail & Related papers (2020-12-07T01:33:40Z) - Measurement-device-independent QSDC protocol using Bell and GHZ states
on quantum simulator [0.0]
Quantum Secure Direct Communication (QSDC) protocol eliminates the necessity of key, encryption and ciphertext transmission.
It is a unique quantum communication scheme where secret information is transmitted directly over a quantum communication channel.
We make use of measurement-device-independent (MDI) protocol in this scheme where all the measurements of quantum states during communication are performed by a third party.
arXiv Detail & Related papers (2020-07-01T07:47:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.