論文の概要: Robust Loss Functions for Object Grasping under Limited Ground Truth
- arxiv url: http://arxiv.org/abs/2409.05742v1
- Date: Mon, 9 Sep 2024 15:56:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 14:06:46.355711
- Title: Robust Loss Functions for Object Grasping under Limited Ground Truth
- Title(参考訳): 限られた地盤条件下での物体グラスピングにおけるロバスト損失関数
- Authors: Yangfan Deng, Mengyao Zhang, Yong Zhao,
- Abstract要約: 畳み込みニューラルネットワークをトレーニングしている間、欠落した、あるいは騒々しい真実に対処します。
未ラベル標本に対して,新たに予測されたカテゴリ確率法が定義される。
ノイズの多い基底事実に対しては、ラベルノイズの破損に抵抗する対称損失関数が導入された。
- 参考スコア(独自算出の注目度): 3.794161613920474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object grasping is a crucial technology enabling robots to perceive and interact with the environment sufficiently. However, in practical applications, researchers are faced with missing or noisy ground truth while training the convolutional neural network, which decreases the accuracy of the model. Therefore, different loss functions are proposed to deal with these problems to improve the accuracy of the neural network. For missing ground truth, a new predicted category probability method is defined for unlabeled samples, which works effectively in conjunction with the pseudo-labeling method. Furthermore, for noisy ground truth, a symmetric loss function is introduced to resist the corruption of label noises. The proposed loss functions are powerful, robust, and easy to use. Experimental results based on the typical grasping neural network show that our method can improve performance by 2 to 13 percent.
- Abstract(参考訳): 物体の把握は、ロボットが環境を十分に認識し、相互作用できるようにする重要な技術である。
しかし、実際の応用では、モデルの精度を低下させる畳み込みニューラルネットワークを訓練している間に、研究者は真実の欠如やノイズに直面している。
したがって、ニューラルネットワークの精度を向上させるために、これらの問題に対処するために異なる損失関数を提案する。
提案手法は, 擬似ラベル法と協調して有効に機能する未ラベル標本に対して, 新たに予測されたカテゴリ確率法を定義する。
さらに、ノイズの多い基底事実に対しては、ラベルノイズの破損に抵抗する対称損失関数が導入された。
提案された損失関数は強力で堅牢で使いやすくなっている。
典型的な把握ニューラルネットワークに基づく実験結果から,本手法は性能を2~13%向上できることが示された。
関連論文リスト
- Just How Flexible are Neural Networks in Practice? [89.80474583606242]
ニューラルネットワークは、パラメータを持つ少なくとも多くのサンプルを含むトレーニングセットに適合できると広く信じられている。
しかし実際には、勾配や正規化子など、柔軟性を制限したトレーニング手順によるソリューションしか見つからない。
論文 参考訳(メタデータ) (2024-06-17T12:24:45Z) - Mitigating the Impact of Labeling Errors on Training via Rockafellian Relaxation [0.8741284539870512]
ニューラルネットワークトレーニングのためのRockafellian Relaxation(RR)の実装を提案する。
RRは、分類タスク間で堅牢なパフォーマンスを達成するために、標準的なニューラルネットワーク手法を強化することができる。
RRはラベル付け誤りと/または逆方向の摂動の両方によるデータセットの破損の影響を軽減することができる。
論文 参考訳(メタデータ) (2024-05-30T23:13:01Z) - SGD method for entropy error function with smoothing l0 regularization for neural networks [3.108634881604788]
エントロピー誤差関数はニューラルネットワークで広く使われている。
本稿では,フィードフォワードニューラルネットワークの規則化を円滑に行うエントロピー関数を提案する。
ニューラルネットワークを効果的に学習し、より正確な予測を可能にするため、私たちの仕事は新しくなっています。
論文 参考訳(メタデータ) (2024-05-28T19:54:26Z) - Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning [24.63284452991301]
ネットワーク干渉下での2つの頑健な因果効果推定器を提案する。
具体的には,対象とする学習手法をネットワーク干渉設定に一般化する。
我々は、同定された理論条件を目標損失に変換することによって、エンドツーエンドの因果効果推定器を考案する。
論文 参考訳(メタデータ) (2024-05-06T10:49:51Z) - Noise-Robust Loss Functions: Enhancing Bounded Losses for Large-Scale Noisy Data Learning [0.0]
大きな注釈付きデータセットには、必然的にノイズのあるラベルが含まれており、ラベルを覚えやすいようにディープニューラルネットワークをトレーニングする上で大きな課題となる。
ノイズ・ロバスト損失関数はこの問題に対処するための重要な戦略として現れてきたが、過度に適合しないロバスト損失関数を作成することは依然として困難である。
本稿では,ロジットバイアス(logit bias)と表される新しい手法を提案し,ロジットに正しいクラスの位置で実数$epsilon$を付加する。
論文 参考訳(メタデータ) (2023-06-08T18:38:55Z) - A Fair Loss Function for Network Pruning [93.0013343535411]
本稿では, 刈り込み時のバイアスの抑制に使用できる簡易な改良型クロスエントロピー損失関数である, 性能重み付き損失関数を提案する。
偏見分類器を用いた顔分類と皮膚記述分類タスクの実験により,提案手法が簡便かつ効果的なツールであることを実証した。
論文 参考訳(メタデータ) (2022-11-18T15:17:28Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - FaultFace: Deep Convolutional Generative Adversarial Network (DCGAN)
based Ball-Bearing Failure Detection Method [4.543665832042712]
本稿では,回転軸用ボールベアリング接合部の故障検出のためのFaultFace法を提案する。
Deep Convolutional Generative Adversarial Networkは、バランスの取れたデータセットを得るために、名目と失敗の振る舞いの新しいフェイスポートを作成するために使用される。
論文 参考訳(メタデータ) (2020-07-30T06:37:53Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
ニューラルネットワークのトレーニングプロセス中に隠れた重みに、特定の小さな密度の混合物が蓄積されることが、敵の例の存在の原因の1つであることを示す。
この原理を説明するために、CIFAR-10データセットの両実験と、ある自然な分類タスクに対して、ランダムな勾配勾配勾配を用いた2層ニューラルネットワークをトレーニングすることを証明する理論的結果を示す。
論文 参考訳(メタデータ) (2020-05-20T16:56:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。