Mitigating imperfections in Differential Phase Shift Measurement-Device-Independent Quantum Key Distribution via Plug-and-Play architecture
- URL: http://arxiv.org/abs/2409.05802v1
- Date: Mon, 9 Sep 2024 17:08:44 GMT
- Title: Mitigating imperfections in Differential Phase Shift Measurement-Device-Independent Quantum Key Distribution via Plug-and-Play architecture
- Authors: Nilesh Sharma, Shashank Kumar Ranu, Prabha Mandayam, Anil Prabhakar,
- Abstract summary: Measurement-device-independent quantum key distribution (MDI-QKD) was originally proposed as a means to address the issue of detector side-channel attacks.
We present a plug-and-play scheme for MDI-QKD based on differential phase shift (DPS) encoding.
- Score: 1.8501505150450435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Measurement-device-independent quantum key distribution (MDI-QKD) was originally proposed as a means to address the issue of detector side-channel attacks and enable finite secure key rates over longer distances. However, the asymmetric characteristics of the channels from the two sources to the measurement device in MDI-QKD impose constraints on successfully extracting a secure key. In this work, we present a plug-and-play scheme for MDI-QKD based on differential phase shift (DPS) encoding. Specifically, we analyze the effects of pulse-width mismatch and polarization mismatch between the pulses arriving at the measurement device. The polarization mismatch is modeled with an assumption of sharing a common reference frame, and the maximum allowable mismatch is found to be 11 degrees. Furthermore, we show that a channel length asymmetry of 176.5 km results in Hong-Ou-Mandel interference visibility of 0.37, thereby leading to zero secure key rates for a polarization-based MDI-QKD protocol. We then present a plug-and-play architecture for DPS-MDI-QKD as a solution to some of these issues, thereby paving the way for practical implementations of MDI protocols.
Related papers
- Experimental decoy-state asymmetric measurement-device-independent
quantum key distribution over a turbulent high-loss channel [0.0]
Measurement-Device-Independent (MDI) QKD authorizes an untrusted third party to make measurements and removes all side-channel attacks.
We demonstrate enhancement in the secure key rate under turbulent conditions for finite-size decoy-state MDI QKD.
arXiv Detail & Related papers (2023-11-07T20:36:33Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Resource-Efficient Real-Time Polarization Compensation for MDI-QKD with Rejected Data [5.942776602451944]
Polarization alignment must be maintained over both mutually unbiased bases.
Low key rates and cost are the two most pressing challenges preventing wide adoption of QKD systems.
We propose and implement a novel polarization compensation scheme in the MDI-QKD system.
arXiv Detail & Related papers (2022-09-06T18:00:00Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Gigahertz measurement-device-independent quantum key distribution using
directly modulated lasers [0.0]
Measurement-device-independent quantum key distribution (MDI-QKD) is a technique for quantum-secured communication.
We introduce a simple and compact MDI-QKD system design at gigahertz clock rates with enhanced resilience to laser fluctuations.
Our design enables secure key rates that improve upon the state of the art by an order of magnitude, up to 8 bps at 54 dB channel loss and 2 kbps in the finite-size regime for 30 dB channel loss.
arXiv Detail & Related papers (2021-05-14T10:17:10Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Measurement-device-independent quantum key distribution of multiple
degrees of freedom of a single photon [6.887504495088555]
Measurement-device-independent quantum key distribution (MDI-QKD) provides us a powerful approach to resist all attacks at detection side.
In this paper, we provide an efficient approach to increase the key generation rate of MDI-QKD by adopting multiple degrees of freedom (DOFs) of single photons to generate keys.
arXiv Detail & Related papers (2020-09-21T00:57:27Z) - Efficient decoy-states for the reference-frame-independent
measurement-device-independent quantum key distribution [22.452971995801686]
RFI-MDI-QKD eliminates all possible attacks on detector side and necessity of reference-frame alignment in source sides.
The performance of RFI-MDI-QKD is greatly improved in terms of secret key rate and achievable distance when statistical fluctuations are considered.
arXiv Detail & Related papers (2020-02-10T11:52:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.