Measurement-device-independent quantum key distribution of multiple
degrees of freedom of a single photon
- URL: http://arxiv.org/abs/2009.09555v1
- Date: Mon, 21 Sep 2020 00:57:27 GMT
- Title: Measurement-device-independent quantum key distribution of multiple
degrees of freedom of a single photon
- Authors: Yu-Fei Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng
- Abstract summary: Measurement-device-independent quantum key distribution (MDI-QKD) provides us a powerful approach to resist all attacks at detection side.
In this paper, we provide an efficient approach to increase the key generation rate of MDI-QKD by adopting multiple degrees of freedom (DOFs) of single photons to generate keys.
- Score: 6.887504495088555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measurement-device-independent quantum key distribution (MDI-QKD) provides us
a powerful approach to resist all attacks at detection side. Besides the
unconditional security, people also seek for high key generation rate, but
MDI-QKD has relatively low key generation rate. In this paper, we provide an
efficient approach to increase the key generation rate of MDI-QKD by adopting
multiple degrees of freedom (DOFs) of single photons to generate keys. Compared
with other high-dimension MDI-QKD protocols encoding in one DOF, our protocol
is more flexible, for our protocol generating keys in independent subsystems
and the detection failure or error in a DOF not affecting the information
encoding in other DOFs. Based on above features, our MDI-QKD protocol may have
potential application in future quantum communication field.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Mitigating imperfections in Differential Phase Shift Measurement-Device-Independent Quantum Key Distribution via Plug-and-Play architecture [1.8501505150450435]
Measurement-device-independent quantum key distribution (MDI-QKD) was originally proposed as a means to address the issue of detector side-channel attacks.
We present a plug-and-play scheme for MDI-QKD based on differential phase shift (DPS) encoding.
arXiv Detail & Related papers (2024-09-09T17:08:44Z) - Efficient Device-Independent Quantum Key Distribution [4.817429789586127]
Device-independent quantum key distribution (DIQKD) is a key distribution scheme whose security is based on the laws of quantum physics.
We propose an efficient device-independent quantum key distribution protocol in which one participant prepares states and transmits them to another participant.
arXiv Detail & Related papers (2023-11-16T13:01:34Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - High-dimensional coherent one-way quantum key distribution [0.0]
High-dimensional quantum key distribution (QKD) offers secure communication, with secure key rates that surpass those achievable by QKD protocols.
Existing high-dimensional QKD protocols require additional experimental resources, such as multiport interferometers and multiple detectors.
We present and analyze a novel protocol for arbitrary-dimensional QKD, that requires only the hardware of a standard two-dimensional system.
arXiv Detail & Related papers (2021-05-11T01:06:36Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Loss-tolerant quantum key distribution with a twist [0.0]
We provide an extension of the loss-tolerant protocol [Phys. Rev. A 90, 052314 (2014)], a leading proof technique for analyzing the security of QKD, to MDI QKD protocols that employ mixed signal states.
We find that the mixed states can be interpreted as providing Alice and Bob with a virtual shield system they can employ to reduce Eve's knowledge of the secret key.
arXiv Detail & Related papers (2020-07-16T12:37:43Z) - Reference-Frame-Independent, Measurement-Device-Independent quantum key
distribution using fewer quantum states [1.1242503819703258]
We show that RFI-MDI-QKD can be implemented using fewer quantum states than those of its original proposal.
Compared to the conventional RFI-MDI-QKD where both parties should transmit six quantum states, it significantly simplifies the implementation of the QKD protocol.
arXiv Detail & Related papers (2020-02-05T01:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.