GASP: Gaussian Splatting for Physic-Based Simulations
- URL: http://arxiv.org/abs/2409.05819v1
- Date: Mon, 9 Sep 2024 17:28:57 GMT
- Title: GASP: Gaussian Splatting for Physic-Based Simulations
- Authors: Piotr Borycki, Weronika Smolak, Joanna Waczyńska, Marcin Mazur, Sławomir Tadeja, Przemysław Spurek,
- Abstract summary: Existing physics models use additional meshing mechanisms, including triangle or tetrahedron meshing, marching cubes, or cage meshes.
We modify the physics grounded Newtonian dynamics to align with 3D Gaussian components.
Resulting solution can be integrated into any physics engine that can be treated as a black box.
- Score: 0.42881773214459123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics simulation is paramount for modeling and utilization of 3D scenes in various real-world applications. However, its integration with state-of-the-art 3D scene rendering techniques such as Gaussian Splatting (GS) remains challenging. Existing models use additional meshing mechanisms, including triangle or tetrahedron meshing, marching cubes, or cage meshes. As an alternative, we can modify the physics grounded Newtonian dynamics to align with 3D Gaussian components. Current models take the first-order approximation of a deformation map, which locally approximates the dynamics by linear transformations. In contrast, our Gaussian Splatting for Physics-Based Simulations (GASP) model uses such a map (without any modifications) and flat Gaussian distributions, which are parameterized by three points (mesh faces). Subsequently, each 3D point (mesh face node) is treated as a discrete entity within a 3D space. Consequently, the problem of modeling Gaussian components is reduced to working with 3D points. Additionally, the information on mesh faces can be used to incorporate further properties into the physics model, facilitating the use of triangles. Resulting solution can be integrated into any physics engine that can be treated as a black box. As demonstrated in our studies, the proposed model exhibits superior performance on a diverse range of benchmark datasets designed for 3D object rendering.
Related papers
- DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation [10.250715657201363]
We introduce DreamMesh4D, a novel framework combining mesh representation with geometric skinning technique to generate high-quality 4D object from a monocular video.
Our method is compatible with modern graphic pipelines, showcasing its potential in the 3D gaming and film industry.
arXiv Detail & Related papers (2024-10-09T10:41:08Z) - Direct Learning of Mesh and Appearance via 3D Gaussian Splatting [3.4899193297791054]
We propose a learnable scene model that incorporates 3DGS with an explicit geometry representation, namely a mesh.
Our model learns the mesh and appearance in an end-to-end manner, where we bind 3D Gaussians to the mesh faces and perform differentiable rendering of 3DGS to obtain photometric supervision.
arXiv Detail & Related papers (2024-05-11T07:56:19Z) - 3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis [49.352765055181436]
We propose a 3D geometry-aware deformable Gaussian Splatting method for dynamic view synthesis.
Our solution achieves 3D geometry-aware deformation modeling, which enables improved dynamic view synthesis and 3D dynamic reconstruction.
arXiv Detail & Related papers (2024-04-09T12:47:30Z) - Bridging 3D Gaussian and Mesh for Freeview Video Rendering [57.21847030980905]
GauMesh bridges the 3D Gaussian and Mesh for modeling and rendering the dynamic scenes.
We show that our approach adapts the appropriate type of primitives to represent the different parts of the dynamic scene.
arXiv Detail & Related papers (2024-03-18T04:01:26Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - MoDA: Modeling Deformable 3D Objects from Casual Videos [84.29654142118018]
We propose neural dual quaternion blend skinning (NeuDBS) to achieve 3D point deformation without skin-collapsing artifacts.
In the endeavor to register 2D pixels across different frames, we establish a correspondence between canonical feature embeddings that encodes 3D points within the canonical space.
Our approach can reconstruct 3D models for humans and animals with better qualitative and quantitative performance than state-of-the-art methods.
arXiv Detail & Related papers (2023-04-17T13:49:04Z) - Disentangled3D: Learning a 3D Generative Model with Disentangled
Geometry and Appearance from Monocular Images [94.49117671450531]
State-of-the-art 3D generative models are GANs which use neural 3D volumetric representations for synthesis.
In this paper, we design a 3D GAN which can learn a disentangled model of objects, just from monocular observations.
arXiv Detail & Related papers (2022-03-29T22:03:18Z) - {\phi}-SfT: Shape-from-Template with a Physics-Based Deformation Model [69.27632025495512]
Shape-from-Template (SfT) methods estimate 3D surface deformations from a single monocular RGB camera.
This paper proposes a new SfT approach explaining 2D observations through physical simulations.
arXiv Detail & Related papers (2022-03-22T17:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.