論文の概要: Promptable Closed-loop Traffic Simulation
- arxiv url: http://arxiv.org/abs/2409.05863v1
- Date: Mon, 9 Sep 2024 17:59:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 13:36:22.886237
- Title: Promptable Closed-loop Traffic Simulation
- Title(参考訳): 急速閉ループ交通シミュレーション
- Authors: Shuhan Tan, Boris Ivanovic, Yuxiao Chen, Boyi Li, Xinshuo Weng, Yulong Cao, Philipp Krähenbühl, Marco Pavone,
- Abstract要約: ProSimはマルチモーダルプロンプト可能なクローズドループトラフィックシミュレーションフレームワークである。
ProSimはクローズドループ方式でトラフィックシナリオをロールアウトし、各エージェントと他のトラフィック参加者とのインタラクションをモデル化する。
高速な交通シミュレーションの研究を支援するため,マルチモーダル・プロンプト・インストラクト・520k(ProSim-Instruct-520k)を開発した。
- 参考スコア(独自算出の注目度): 57.36568236100507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation stands as a cornerstone for safe and efficient autonomous driving development. At its core a simulation system ought to produce realistic, reactive, and controllable traffic patterns. In this paper, we propose ProSim, a multimodal promptable closed-loop traffic simulation framework. ProSim allows the user to give a complex set of numerical, categorical or textual prompts to instruct each agent's behavior and intention. ProSim then rolls out a traffic scenario in a closed-loop manner, modeling each agent's interaction with other traffic participants. Our experiments show that ProSim achieves high prompt controllability given different user prompts, while reaching competitive performance on the Waymo Sim Agents Challenge when no prompt is given. To support research on promptable traffic simulation, we create ProSim-Instruct-520k, a multimodal prompt-scenario paired driving dataset with over 10M text prompts for over 520k real-world driving scenarios. We will release code of ProSim as well as data and labeling tools of ProSim-Instruct-520k at https://ariostgx.github.io/ProSim.
- Abstract(参考訳): シミュレーションは安全で効率的な自動運転開発の基礎となっている。
コアとなるシミュレーションシステムは、現実的でリアクティブで制御可能なトラフィックパターンを生成する必要がある。
本稿では,マルチモーダルなクローズドループ交通シミュレーションフレームワークProSimを提案する。
ProSimを使うと、ユーザーは複雑な数値、分類、テキストのプロンプトを与え、各エージェントの行動と意図を指示することができる。
ProSimはその後、クローズドループ方式でトラフィックシナリオをロールアウトし、各エージェントと他のトラフィック参加者とのインタラクションをモデル化する。
実験の結果,ProSimは異なるユーザプロンプトを与えられた場合,高いプロンプト制御性を実現し,プロンプトを付与しない場合,Waymo Sim Agents Challengeでの競争性能を達成できた。
ProSim-Instruct-520kは,1000万以上のテキストプロンプトを持つマルチモーダル・プロセサリオ・ペア駆動データセットで,実世界520万以上の運転シナリオを対象としている。
ProSimのコードとProSim-Instruct-520kのデータおよびラベルツールをhttps://ariostgx.github.io/ProSimでリリースします。
関連論文リスト
- ChatSUMO: Large Language Model for Automating Traffic Scenario Generation in Simulation of Urban MObility [5.111204055180423]
大規模言語モデル(LLM)は、テキスト、音声、画像、ビデオなどのマルチモーダルな入力と出力を扱うことができる。
本稿では,言語処理スキルを統合し,抽象的および実世界のシミュレーションシナリオを生成するLLMベースのエージェントChatSUMOを提案する。
シミュレーション生成のために,オールバニ市における実世界のシミュレーションを96%の精度で作成した。
論文 参考訳(メタデータ) (2024-08-29T03:59:11Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Parallel Bayesian Optimization of Agent-based Transportation Simulation [0.4129225533930965]
MATSimは、道路交通、公共交通、貨物輸送、地域避難など様々な分野に適用される、オープンソースの大規模エージェントベースの交通計画プロジェクトである。
BEAMシミュレーションのエージェントは、マルチノードロジットモデルに基づく「モード選択」の振る舞いを示す。
そこで本研究では,自転車,車,歩行,車いす,車いす,車いす,車いす,車いす,車いす,車いす,車いす,車いす,車いすの8つのモードの選択について検討した。
与えられたマルチイン・マルチアウト問題に対する高速収束を実現するために,早期停止規則付き並列ベイズ最適化法を提案する。
論文 参考訳(メタデータ) (2022-07-11T17:49:29Z) - Metaphorical User Simulators for Evaluating Task-oriented Dialogue
Systems [80.77917437785773]
タスク指向対話システム(TDS)は、主にオフラインまたは人間による評価によって評価される。
本稿では,エンド・ツー・エンドのTDS評価のためのメタファ型ユーザシミュレータを提案する。
また,異なる機能を持つ対話システムなどの変種を生成するためのテスタベースの評価フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-02T05:11:03Z) - Auto-Tuned Sim-to-Real Transfer [143.44593793640814]
シミュレーションで訓練されたポリシーは、しばしば現実世界に移されるときに失敗する。
ドメインのランダム化のようなこの問題に取り組む現在のアプローチには、事前の知識とエンジニアリングが必要である。
実世界に合わせてシミュレータシステムパラメータを自動的にチューニングする手法を提案する。
論文 参考訳(メタデータ) (2021-04-15T17:59:55Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。