Bridging Rested and Restless Bandits with Graph-Triggering: Rising and Rotting
- URL: http://arxiv.org/abs/2409.05980v1
- Date: Mon, 9 Sep 2024 18:23:07 GMT
- Title: Bridging Rested and Restless Bandits with Graph-Triggering: Rising and Rotting
- Authors: Gianmarco Genalti, Marco Mussi, Nicola Gatti, Marcello Restelli, Matteo Castiglioni, Alberto Maria Metelli,
- Abstract summary: Graph-Triggered Bandits is a framework to generalize rested and restless bandits.
In this work, we focus on two specific types of monotonic bandits: rising, where the expected reward of an arm grows as the number of triggers increases, and rotting, where the opposite behavior occurs.
- Score: 67.1631453378926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rested and Restless Bandits are two well-known bandit settings that are useful to model real-world sequential decision-making problems in which the expected reward of an arm evolves over time due to the actions we perform or due to the nature. In this work, we propose Graph-Triggered Bandits (GTBs), a unifying framework to generalize and extend rested and restless bandits. In this setting, the evolution of the arms' expected rewards is governed by a graph defined over the arms. An edge connecting a pair of arms $(i,j)$ represents the fact that a pull of arm $i$ triggers the evolution of arm $j$, and vice versa. Interestingly, rested and restless bandits are both special cases of our model for some suitable (degenerated) graph. As relevant case studies for this setting, we focus on two specific types of monotonic bandits: rising, where the expected reward of an arm grows as the number of triggers increases, and rotting, where the opposite behavior occurs. For these cases, we study the optimal policies. We provide suitable algorithms for all scenarios and discuss their theoretical guarantees, highlighting the complexity of the learning problem concerning instance-dependent terms that encode specific properties of the underlying graph structure.
Related papers
- A General Framework for Clustering and Distribution Matching with Bandit Feedback [81.50716021326194]
We develop a general framework for clustering and distribution matching problems with bandit feedback.
We derive a non-asymptotic lower bound on the average number of arm pulls for any online algorithm with an error probability not exceeding $delta$.
arXiv Detail & Related papers (2024-09-08T12:19:12Z) - Imprecise Multi-Armed Bandits [0.0]
We introduce a novel multi-armed bandit framework, where each arm is associated with a fixed unknown credal set over the space of outcomes.
We then define a notion of regret corresponding to the lower prevision defined by these credal sets.
arXiv Detail & Related papers (2024-05-09T10:58:40Z) - Indexability of Finite State Restless Multi-Armed Bandit and Rollout
Policy [5.64327489637232]
We consider finite state restless multi-armed bandit problem.
The classical approach to restless bandits is Whittle index policy.
We propose an alternative approach to verify the indexable criteria for a single armed bandit model.
arXiv Detail & Related papers (2023-04-30T06:53:44Z) - Best Arm Identification in Restless Markov Multi-Armed Bandits [85.55466536537293]
We study the problem of identifying the best arm in a multi-armed bandit environment.
A decision entity wishes to find the index of the best arm as quickly as possible, subject to an upper bound error probability.
We show that this policy achieves an upper bound that depends on $R$ and is monotonically non-increasing as $Rtoinfty$.
arXiv Detail & Related papers (2022-03-29T04:58:04Z) - Combinatorial Blocking Bandits with Stochastic Delays [33.65025386998747]
Recent work has considered natural variations of the multi-armed bandit problem, where the reward of each arm is a special function of the time passed since its last pulling.
In this work, we extend the above model in two directions: (i) We consider the general setting where more than one arms can be played at each round, subject to feasibility constraints.
We provide a tight analysis of the approximation of a natural greedy subset that always plays the maximum expected reward feasible among the available (non-blocked) arms.
When the arms' expected rewards are unknown, we adapt the above algorithm into a bandit, based on
arXiv Detail & Related papers (2021-05-22T02:46:04Z) - Top-$k$ eXtreme Contextual Bandits with Arm Hierarchy [71.17938026619068]
We study the top-$k$ extreme contextual bandits problem, where the total number of arms can be enormous.
We first propose an algorithm for the non-extreme realizable setting, utilizing the Inverse Gap Weighting strategy.
We show that our algorithm has a regret guarantee of $O(ksqrt(A-k+1)T log (|mathcalF|T))$.
arXiv Detail & Related papers (2021-02-15T19:10:52Z) - Online Model Selection: a Rested Bandit Formulation [49.69377391589057]
We introduce and analyze a best arm identification problem in the rested bandit setting.
We define a novel notion of regret for this problem, where we compare to the policy that always plays the arm having the smallest expected loss at the end of the game.
Unlike known model selection efforts in the recent bandit literature, our algorithm exploits the specific structure of the problem to learn the unknown parameters of the expected loss function.
arXiv Detail & Related papers (2020-12-07T08:23:08Z) - Robustness Guarantees for Mode Estimation with an Application to Bandits [131.21717367564963]
We introduce a theory for multi-armed bandits where the values are the modes of the reward distributions instead of the mean.
We show in simulations that our algorithms are robust to perturbation of the arms by adversarial noise sequences.
arXiv Detail & Related papers (2020-03-05T21:29:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.