Robustness Guarantees for Mode Estimation with an Application to Bandits
- URL: http://arxiv.org/abs/2003.02932v1
- Date: Thu, 5 Mar 2020 21:29:27 GMT
- Title: Robustness Guarantees for Mode Estimation with an Application to Bandits
- Authors: Aldo Pacchiano, Heinrich Jiang, Michael I. Jordan
- Abstract summary: We introduce a theory for multi-armed bandits where the values are the modes of the reward distributions instead of the mean.
We show in simulations that our algorithms are robust to perturbation of the arms by adversarial noise sequences.
- Score: 131.21717367564963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mode estimation is a classical problem in statistics with a wide range of
applications in machine learning. Despite this, there is little understanding
in its robustness properties under possibly adversarial data contamination. In
this paper, we give precise robustness guarantees as well as privacy guarantees
under simple randomization. We then introduce a theory for multi-armed bandits
where the values are the modes of the reward distributions instead of the mean.
We prove regret guarantees for the problems of top arm identification, top
m-arms identification, contextual modal bandits, and infinite continuous arms
top arm recovery. We show in simulations that our algorithms are robust to
perturbation of the arms by adversarial noise sequences, thus rendering modal
bandits an attractive choice in situations where the rewards may have outliers
or adversarial corruptions.
Related papers
- Bridging Rested and Restless Bandits with Graph-Triggering: Rising and Rotting [67.1631453378926]
Graph-Triggered Bandits is a framework to generalize rested and restless bandits.
In this work, we focus on two specific types of monotonic bandits: rising, where the expected reward of an arm grows as the number of triggers increases, and rotting, where the opposite behavior occurs.
arXiv Detail & Related papers (2024-09-09T18:23:07Z) - Neural Dueling Bandits [58.90189511247936]
We use a neural network to estimate the reward function using preference feedback for the previously selected arms.
We then extend our theoretical results to contextual bandit problems with binary feedback, which is in itself a non-trivial contribution.
arXiv Detail & Related papers (2024-07-24T09:23:22Z) - Pure Exploration for Constrained Best Mixed Arm Identification with a Fixed Budget [6.22018632187078]
We introduce the constrained best mixed arm identification (CBMAI) problem with a fixed budget.
The goal is to find the best mixed arm that maximizes the expected reward subject to constraints on the expected costs with a given learning budget $N$.
We provide a theoretical upper bound on the mis-identification (of the the support of the best mixed arm) probability and show that it decays exponentially in the budget $N$.
arXiv Detail & Related papers (2024-05-23T22:35:11Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - From Optimality to Robustness: Dirichlet Sampling Strategies in
Stochastic Bandits [0.0]
We study a generic Dirichlet Sampling (DS) algorithm, based on pairwise comparisons of empirical indices computed with re-sampling of the arms' observations.
We show that different variants of this strategy achieve provably optimal regret guarantees when the distributions are bounded and logarithmic regret for semi-bounded distributions with a mild quantile condition.
arXiv Detail & Related papers (2021-11-18T14:34:21Z) - Combinatorial Blocking Bandits with Stochastic Delays [33.65025386998747]
Recent work has considered natural variations of the multi-armed bandit problem, where the reward of each arm is a special function of the time passed since its last pulling.
In this work, we extend the above model in two directions: (i) We consider the general setting where more than one arms can be played at each round, subject to feasibility constraints.
We provide a tight analysis of the approximation of a natural greedy subset that always plays the maximum expected reward feasible among the available (non-blocked) arms.
When the arms' expected rewards are unknown, we adapt the above algorithm into a bandit, based on
arXiv Detail & Related papers (2021-05-22T02:46:04Z) - Online Model Selection: a Rested Bandit Formulation [49.69377391589057]
We introduce and analyze a best arm identification problem in the rested bandit setting.
We define a novel notion of regret for this problem, where we compare to the policy that always plays the arm having the smallest expected loss at the end of the game.
Unlike known model selection efforts in the recent bandit literature, our algorithm exploits the specific structure of the problem to learn the unknown parameters of the expected loss function.
arXiv Detail & Related papers (2020-12-07T08:23:08Z) - Online and Distribution-Free Robustness: Regression and Contextual
Bandits with Huber Contamination [29.85468294601847]
We revisit two classic high-dimensional online learning problems, namely linear regression and contextual bandits.
We show that our algorithms succeed where conventional methods fail.
arXiv Detail & Related papers (2020-10-08T17:59:05Z) - Optimal Best-arm Identification in Linear Bandits [79.3239137440876]
We devise a simple algorithm whose sampling complexity matches known instance-specific lower bounds.
Unlike existing best-arm identification strategies, our algorithm uses a stopping rule that does not depend on the number of arms.
arXiv Detail & Related papers (2020-06-29T14:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.