Case Study: Leveraging GenAI to Build AI-based Surrogates and Regressors for Modeling Radio Frequency Heating in Fusion Energy Science
- URL: http://arxiv.org/abs/2409.06122v1
- Date: Tue, 10 Sep 2024 00:22:19 GMT
- Title: Case Study: Leveraging GenAI to Build AI-based Surrogates and Regressors for Modeling Radio Frequency Heating in Fusion Energy Science
- Authors: E. Wes Bethel, Vianna Cramer, Alexander del Rio, Lothar Narins, Chris Pestano, Satvik Verma, Erick Arias, Nicola Bertelli, Talita Perciano, Syun'ichi Shiraiwa, Álvaro Sánchez Villar, Greg Wallace, John C. Wright,
- Abstract summary: This work presents a detailed case study on using Generative AI (GenAI) to develop AI surrogates for simulation models in fusion energy research.
The scope includes the methodology, implementation, and results of using GenAI to assist in model development and optimization.
- Score: 30.658306142871602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a detailed case study on using Generative AI (GenAI) to develop AI surrogates for simulation models in fusion energy research. The scope includes the methodology, implementation, and results of using GenAI to assist in model development and optimization, comparing these results with previous manually developed models.
Related papers
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
This paper aims to investigate the intersection of GenAI and SAR.
First, we illustrate the common data generation-based applications in SAR field.
Then, an overview of the latest GenAI models is systematically reviewed.
Finally, the corresponding applications in SAR domain are also included.
arXiv Detail & Related papers (2024-11-05T03:06:00Z) - The Roles of Generative Artificial Intelligence in Internet of Electric Vehicles [65.14115295214636]
We specifically consider Internet of electric vehicles (IoEV) and we categorize GenAI for IoEV into four different layers.
We introduce various GenAI techniques used in each layer of IoEV applications.
Public datasets available for training the GenAI models are summarized.
arXiv Detail & Related papers (2024-09-24T05:12:10Z) - Recommendation with Generative Models [35.029116616023586]
Generative models are AI models capable of creating new instances of data by learning and sampling from their statistical distributions.
These models have applications across various domains, such as image generation, text synthesis, and music composition.
In recommender systems, generative models, referred to as Gen-RecSys, improve the accuracy and diversity of recommendations.
arXiv Detail & Related papers (2024-09-18T18:29:15Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Opportunities and challenges in the application of large artificial intelligence models in radiology [4.543169454051341]
More and more large models in subdivided fields are gradually being proposed, especially large models in radiology imaging field.
This article first introduces the development history of large models, technical details, workflow, working principles of multimodal large models and working principles of video generation large models.
arXiv Detail & Related papers (2024-03-24T12:05:23Z) - Applied Causal Inference Powered by ML and AI [54.88868165814996]
The book presents ideas from classical structural equation models (SEMs) and their modern AI equivalent, directed acyclical graphs (DAGs) and structural causal models (SCMs)
It covers Double/Debiased Machine Learning methods to do inference in such models using modern predictive tools.
arXiv Detail & Related papers (2024-03-04T20:28:28Z) - Generative AI and Process Systems Engineering: The Next Frontier [0.5937280131734116]
This article explores how emerging generative artificial intelligence (GenAI) models, such as large language models (LLMs), can enhance solution methodologies within process systems engineering (PSE)
These cutting-edge GenAI models, particularly foundation models (FMs), are pre-trained on extensive, general-purpose datasets.
The article identifies and discusses potential challenges in fully leveraging GenAI within PSE, including multiscale modeling, data requirements, evaluation metrics and benchmarks, and trust and safety.
arXiv Detail & Related papers (2024-02-15T18:20:42Z) - GenLens: A Systematic Evaluation of Visual GenAI Model Outputs [33.93591473459988]
GenLens is a visual analytic interface designed for the systematic evaluation of GenAI model outputs.
A user study with model developers reveals that GenLens effectively enhances their workflow, evidenced by high satisfaction rates.
arXiv Detail & Related papers (2024-02-06T04:41:06Z) - A Comprehensive Performance Study of Large Language Models on Novel AI
Accelerators [2.88634411143577]
Large language models (LLMs) are being considered as a promising approach to address some of the challenging problems.
Specialized AI accelerator hardware systems have recently become available for accelerating AI applications.
arXiv Detail & Related papers (2023-10-06T21:55:57Z) - Neurosymbolic AI and its Taxonomy: a survey [48.7576911714538]
Neurosymbolic AI deals with models that combine symbolic processing, like classic AI, and neural networks.
This survey investigates research papers in this area during recent years and brings classification and comparison between the presented models as well as applications.
arXiv Detail & Related papers (2023-05-12T19:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.