Applied Causal Inference Powered by ML and AI
- URL: http://arxiv.org/abs/2403.02467v1
- Date: Mon, 4 Mar 2024 20:28:28 GMT
- Title: Applied Causal Inference Powered by ML and AI
- Authors: Victor Chernozhukov, Christian Hansen, Nathan Kallus, Martin Spindler,
Vasilis Syrgkanis
- Abstract summary: The book presents ideas from classical structural equation models (SEMs) and their modern AI equivalent, directed acyclical graphs (DAGs) and structural causal models (SCMs)
It covers Double/Debiased Machine Learning methods to do inference in such models using modern predictive tools.
- Score: 54.88868165814996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An introduction to the emerging fusion of machine learning and causal
inference. The book presents ideas from classical structural equation models
(SEMs) and their modern AI equivalent, directed acyclical graphs (DAGs) and
structural causal models (SCMs), and covers Double/Debiased Machine Learning
methods to do inference in such models using modern predictive tools.
Related papers
- Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models [0.0]
We introduce new mathematical constructs, including hyper-symmetry categories and functorial representations, to model complex transformations within machine learning algorithms.
Our contributions include the design of symmetry-enriched learning models, the development of advanced optimization techniques leveraging categorical symmetries, and the theoretical analysis of their implications for model robustness, generalization, and convergence.
arXiv Detail & Related papers (2024-09-18T16:20:57Z) - Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
Inconsistencies between XAI and modeling techniques can have the undesirable effect of casting doubt upon the efficacy of these explainability approaches.
We propose a systematic, perturbation-based analysis against a popular, model-agnostic method in XAI, SHapley Additive exPlanations (Shap)
We devise algorithms to generate relative feature importance in settings of dynamic inference amongst a suite of popular machine learning and deep learning methods, and metrics that allow us to quantify how well explanations generated under the static case hold.
arXiv Detail & Related papers (2024-05-30T16:04:35Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
Investigating internal reasoning mechanisms of large language models can help us design better model architectures and training strategies.
In this study, we constructed a symbolic dataset to investigate the mechanisms by which Transformer models employ vertical thinking strategy.
We proposed a random matrix-based algorithm to enhance the model's reasoning ability, resulting in a 75% reduction in the training time required for the GPT-2 model.
arXiv Detail & Related papers (2024-05-24T07:41:26Z) - Tasks Makyth Models: Machine Learning Assisted Surrogates for Tipping
Points [0.0]
We present a machine learning (ML)-assisted framework for detecting tipping points in the emergent behavior of complex systems.
We construct reduced-order models for the emergent dynamics at different scales.
We contrast the uses of the different models and the effort involved in learning them.
arXiv Detail & Related papers (2023-09-25T17:58:23Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - SLEM: Machine Learning for Path Modeling and Causal Inference with Super
Learner Equation Modeling [3.988614978933934]
Causal inference is a crucial goal of science, enabling researchers to arrive at meaningful conclusions using observational data.
Path models, Structural Equation Models (SEMs) and Directed Acyclic Graphs (DAGs) provide a means to unambiguously specify assumptions regarding the causal structure underlying a phenomenon.
We propose Super Learner Equation Modeling, a path modeling technique integrating machine learning Super Learner ensembles.
arXiv Detail & Related papers (2023-08-08T16:04:42Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Accurate and Intuitive Contextual Explanations using Linear Model Trees [0.0]
Local post hoc model explanations have gained massive adoption.
Current state of the art methods use rudimentary methods to generate synthetic data around the point to be explained.
We use a Generative Adversarial Network for synthetic data generation and train a piecewise linear model in the form of Linear Model Trees.
arXiv Detail & Related papers (2020-09-11T10:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.