Variational Search Distributions
- URL: http://arxiv.org/abs/2409.06142v3
- Date: Sat, 07 Dec 2024 01:43:33 GMT
- Title: Variational Search Distributions
- Authors: Daniel M. Steinberg, Rafael Oliveira, Cheng Soon Ong, Edwin V. Bonilla,
- Abstract summary: We develop variational search (VSD) for finding and generating discrete, designs of a rare desired class in a batch sequential manner.
We empirically demonstrate that VSD can outperform existing baseline methods on a set of real sequence-design problems in various biological systems.
- Score: 16.609027794680213
- License:
- Abstract: We develop variational search distributions (VSD), a method for finding and generating discrete, combinatorial designs of a rare desired class in a batch sequential manner with a fixed experimental budget. We formalize the requirements and desiderata for active generation and formulate a solution via variational inference. In particular, VSD uses off-the-shelf gradient based optimization routines, can learn powerful generative models for designs, and can take advantage of scalable predictive models. We derive asymptotic convergence rates for learning the true conditional generative distribution of designs with certain configurations of our method. After illustrating the generative model on images, we empirically demonstrate that VSD can outperform existing baseline methods on a set of real sequence-design problems in various biological systems.
Related papers
- Heuristically Adaptive Diffusion-Model Evolutionary Strategy [1.8299322342860518]
Diffusion Models represent a significant advancement in generative modeling.
Our research reveals a fundamental connection between diffusion models and evolutionary algorithms.
Our framework marks a major algorithmic transition, offering increased flexibility, precision, and control in evolutionary optimization processes.
arXiv Detail & Related papers (2024-11-20T16:06:28Z) - Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling [2.1779479916071067]
We introduce a novel framework that enhances diffusion models by supporting a broader range of forward processes.
We also propose a novel parameterization technique for learning the forward process.
Results underscore NFDM's versatility and its potential for a wide range of applications.
arXiv Detail & Related papers (2024-04-19T15:10:54Z) - Variational Sequential Optimal Experimental Design using Reinforcement Learning [0.0]
vsOED employs a one-point reward formulation with variational posterior approximations, providing a provable lower bound to the expected information gain.
We demonstrate vsOED across various engineering and science applications, illustrating its superior sample efficiency compared to existing sequential experimental design algorithms.
arXiv Detail & Related papers (2023-06-17T21:47:19Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - LayoutDM: Transformer-based Diffusion Model for Layout Generation [0.6445605125467572]
Transformer-based diffusion model (DDPM) is proposed to generate high-quality images.
Transformer-based conditional Layout Denoiser is proposed to generate samples from noised layout data.
Our method outperforms state-of-the-art generative models in terms of quality and diversity.
arXiv Detail & Related papers (2023-05-04T05:51:35Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
Deep generative models have emerged as a popular machine learning-based approach for inverse problems in the life sciences.
These problems often require sampling new designs that satisfy multiple properties of interest in addition to learning the data distribution.
arXiv Detail & Related papers (2022-10-19T19:04:45Z) - Generative Archimedean Copulas [27.705956325584026]
We propose a new generative modeling technique for learning multidimensional cumulative distribution functions (CDFs) in the form of copulas.
We consider certain classes of copulas known as Archimedean and hierarchical Archimedean copulas, popular for their parsimonious representation and ability to model different tail dependencies.
arXiv Detail & Related papers (2021-02-22T20:45:40Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.