論文の概要: VE: Modeling Multivariate Time Series Correlation with Variate Embedding
- arxiv url: http://arxiv.org/abs/2409.06169v2
- Date: Thu, 31 Oct 2024 01:47:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 22:16:23.248678
- Title: VE: Modeling Multivariate Time Series Correlation with Variate Embedding
- Title(参考訳): VE:変数埋め込みによる多変量時系列相関のモデル化
- Authors: Shangjiong Wang, Zhihong Man, Zhenwei Cao, Jinchuan Zheng, Zhikang Ge,
- Abstract要約: 現在のチャネル非依存(CI)モデルとCI最終射影層を持つモデルは相関を捉えることができない。
可変埋め込み(VE)パイプラインを提案し,各変数に対して一意かつ一貫した埋め込みを学習する。
VEパイプラインは、CI最終プロジェクション層を持つ任意のモデルに統合して、多変量予測を改善することができる。
- 参考スコア(独自算出の注目度): 0.4893345190925178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time series forecasting relies on accurately capturing the correlations among variates. Current channel-independent (CI) models and models with a CI final projection layer are unable to capture these dependencies. In this paper, we present the variate embedding (VE) pipeline, which learns a unique and consistent embedding for each variate and combines it with Mixture of Experts (MoE) and Low-Rank Adaptation (LoRA) techniques to enhance forecasting performance while controlling parameter size. The VE pipeline can be integrated into any model with a CI final projection layer to improve multivariate forecasting. The learned VE effectively groups variates with similar temporal patterns and separates those with low correlations. The effectiveness of the VE pipeline is demonstrated through experiments on four widely-used datasets. The code is available at: https://github.com/swang-song/VE.
- Abstract(参考訳): 多変量時系列予測は、変数間の相関を正確に把握することに依存する。
現在のチャネル非依存(CI)モデルとCI最終プロジェクション層を持つモデルは、これらの依存関係をキャプチャできない。
本稿では,各変数に対して一意かつ一貫した埋め込みを学習し,パラメータサイズを制御しながら予測性能を向上させるために,Mixture of Experts (MoE) と Low-Rank Adaptation (LoRA) 技術を組み合わせた可変埋め込み(VE)パイプラインを提案する。
VEパイプラインは、CI最終プロジェクション層を持つ任意のモデルに統合して、多変量予測を改善することができる。
学習されたVEは、同じ時間パターンで発散し、相関が低いものを分離する。
VEパイプラインの有効性は、広く使用されている4つのデータセットの実験を通じて実証される。
コードは、https://github.com/swang-song/VE.comで入手できる。
関連論文リスト
- UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - VCformer: Variable Correlation Transformer with Inherent Lagged Correlation for Multivariate Time Series Forecasting [1.5165632546654102]
本稿では,変数間の相関を抽出する可変相関変換器(VCformer)を提案する。
VCAはクエリとキー間の遅延に応じて、相互相関スコアを計算し、統合する。
クープマンダイナミクス理論にインスパイアされた我々は、時系列の非定常性を改善するために、クープマン時間検出器(KTD)を開発した。
論文 参考訳(メタデータ) (2024-05-19T07:39:22Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
本研究では,各サンプルに対して総合的な時間的相互作用特徴学習を実現するためのトランスフォーマーベースのエンコーダを提案する。
実世界の3つのデータセットについて広範な実験を行い、提案したCoFormerが既存の手法を大幅に上回っていることを検証した。
論文 参考訳(メタデータ) (2023-10-17T06:29:09Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
我々は,異なる時刻スタンプにおける変数の相互依存性を利用するための,シンプルで効率的なインスタンス単位のグラフベースのフレームワークを提案する。
私たちのフレームワークのキーとなる考え方は、異なる変数の履歴時系列から予測すべき現在の時系列に情報を集約することです。
論文 参考訳(メタデータ) (2021-09-14T07:38:35Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
時系列予測は科学的・工学的な問題の基本である。
深層学習法はこの問題に適している。
多くの実世界のデータセットにおける標準メトリクスの最先端よりも改善されていることを示す。
論文 参考訳(メタデータ) (2020-02-14T16:16:51Z) - A Deep Structural Model for Analyzing Correlated Multivariate Time
Series [11.009809732645888]
相関した多変量時系列入力を処理できる深層学習構造時系列モデルを提案する。
モデルは、トレンド、季節性、イベントコンポーネントを明示的に学習し、抽出する。
我々は,様々な時系列データセットに関する総合的な実験を通して,そのモデルと最先端のいくつかの手法を比較した。
論文 参考訳(メタデータ) (2020-01-02T18:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。