Applications of machine learning to predict seasonal precipitation for East Africa
- URL: http://arxiv.org/abs/2409.06238v1
- Date: Tue, 10 Sep 2024 06:16:03 GMT
- Title: Applications of machine learning to predict seasonal precipitation for East Africa
- Authors: Michael Scheuerer, Claudio Heinrich-Mertsching, Titike K. Bahaga, Masilin Gudoshava, Thordis L. Thorarinsdottir,
- Abstract summary: Large-scale climate variability is linked to local or regional temperature or precipitation in a linear or non-linear fashion.
This paper investigates the use of interpretable ML methods to predict seasonal precipitation for East Africa in an operational setting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Seasonal climate forecasts are commonly based on model runs from fully coupled forecasting systems that use Earth system models to represent interactions between the atmosphere, ocean, land and other Earth-system components. Recently, machine learning (ML) methods are increasingly being investigated for this task where large-scale climate variability is linked to local or regional temperature or precipitation in a linear or non-linear fashion. This paper investigates the use of interpretable ML methods to predict seasonal precipitation for East Africa in an operational setting. Dimension reduction is performed by decomposing the precipitation fields via empirical orthogonal functions (EOFs), such that only the respective factor loadings need to the predicted. Indices of large-scale climate variability--including the rate of change in individual indices as well as interactions between different indices--are then used as potential features to obtain tercile forecasts from an interpretable ML algorithm. Several research questions regarding the use of data and the effect of model complexity are studied. The results are compared against the ECMWF seasonal forecasting system (SEAS5) for three seasons--MAM, JJAS and OND--over the period 1993-2020. Compared to climatology for the same period, the ECMWF forecasts have negative skill in MAM and JJAS and significant positive skill in OND. The ML approach is on par with climatology in MAM and JJAS and a significantly positive skill in OND, if not quite at the level of the OND ECMWF forecast.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting [10.083361616081874]
This study explores an application of machine learning (ML) models as post-processing tools for subseasonal forecasting.
Lagged numerical ensemble forecasts and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods.
For regression, quantile regression, and tercile classification tasks, we consider using linear models, random forests, convolutional neural networks, and stacked models.
arXiv Detail & Related papers (2022-11-29T01:11:04Z) - Surrogate Ensemble Forecasting for Dynamic Climate Impact Models [0.0]
This study considers a climate driven disease model, the Liverpool Malaria Model (LMM), which predicts the malaria transmission coefficient R0.
The input and output data is used to train surrogate models in the form of a Random Forest Quantile Regression (RFQR) model and a Bayesian Long Short-Term Memory (BLSTM) neural network.
arXiv Detail & Related papers (2022-04-12T13:30:01Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Modeling of Pan Evaporation Based on the Development of Machine Learning
Methods [0.0]
Changes in climatic factors, such as changes in temperature, wind speed, sunshine hours, humidity, and solar radiation can have a significant impact on the evaporation process.
The aim of this study is to investigate the feasibility of several machines learning (ML) models for modeling the monthly pan evaporation estimation.
arXiv Detail & Related papers (2021-10-10T10:06:16Z) - Reservoir Computing as a Tool for Climate Predictability Studies [0.0]
We show that Reservoir Computing provides an alternative nonlinear approach that improves on the predictive skill of the Linear-Inverse-Modeling approach.
The improved predictive skill of the RC approach over a wide range of conditions suggests that this machine-learning technique may have a use in climate predictability studies.
arXiv Detail & Related papers (2021-02-24T22:22:59Z) - Sub-Seasonal Climate Forecasting via Machine Learning: Challenges,
Analysis, and Advances [44.28969320556008]
Sub-seasonal climate forecasting (SSF) focuses on predicting key climate variables such as temperature and precipitation in the 2-week to 2-month time scales.
In this paper, we study a variety of machine learning (ML) approaches for SSF over the US mainland.
arXiv Detail & Related papers (2020-06-14T18:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.