論文の概要: DiPT: Enhancing LLM reasoning through diversified perspective-taking
- arxiv url: http://arxiv.org/abs/2409.06241v1
- Date: Tue, 10 Sep 2024 06:17:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 18:50:07.730864
- Title: DiPT: Enhancing LLM reasoning through diversified perspective-taking
- Title(参考訳): DiPT:LLM推論の多角化による強化
- Authors: Hoang Anh Just, Mahavir Dabas, Lifu Huang, Ming Jin, Ruoxi Jia,
- Abstract要約: 既存の言語モデル推論の改善作業は、通常、単一のソリューションパスを探索する。
本稿では,社会学における視点学習にヒントを得て,新しいアプローチであるDiPTを紹介する。
これにより、モデルは問題のコンテキストをより深く理解し、最も効果的なソリューションパスを特定することができる。
- 参考スコア(独自算出の注目度): 27.443341091299168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing work on improving language model reasoning typically explores a single solution path, which can be prone to errors. Inspired by perspective-taking in social studies, this paper introduces DiPT, a novel approach that complements current reasoning methods by explicitly incorporating diversified viewpoints. This approach allows the model to gain a deeper understanding of the problem's context and identify the most effective solution path during the inference stage. Additionally, it provides a general data-centric AI recipe for augmenting existing data to improve their quality for fine-tuning. Our empirical results demonstrate that DiPT can be flexibly integrated into existing methods that focus on a single reasoning approach, enhancing their reasoning performance and stability when presented with paraphrased problems. Furthermore, we illustrate improved context understanding by maintaining the model's safe outputs against "jailbreaking" prompts intentionally designed to bypass safeguards built into deployed models. Lastly, we show that fine-tuning with data enriched with diverse perspectives can boost the reasoning capabilities of the model compared to fine-tuning with raw data alone.
- Abstract(参考訳): 言語モデルの推論を改善するための既存の作業は、通常、単一のソリューションパスを探索する。
社会的研究における視点取組みから着想を得たDiPTは,多様な視点を明示的に取り入れることで,現在の推論手法を補完する新しいアプローチである。
このアプローチにより、モデルは問題のコンテキストをより深く理解し、推論段階で最も効果的な解経路を特定することができる。
さらに、既存のデータを拡張するための一般的なデータ中心のAIレシピを提供し、微調整の質を向上させる。
実験結果から,DiPTは単一推論手法に焦点をあてた既存手法に柔軟に統合され,パラフレーズ付き問題を提示した場合の推論性能と安定性が向上することが示された。
さらに、デプロイされたモデルに組み込まれたセーフガードを回避すべく意図的に設計された「ジェイルブレイク」プロンプトに対して、モデルのセーフアウトプットを維持することで、コンテキスト理解を改善した。
最後に,多様な視点に富んだデータによる微調整が,生データのみによる微調整と比較してモデルの推論能力を高めることを示す。
関連論文リスト
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - Inverse-RLignment: Inverse Reinforcement Learning from Demonstrations for LLM Alignment [62.05713042908654]
本稿では,これらの課題を克服するために,高品質な実演データを活用する新しいアプローチであるAlignment from Demonstrations (AfD)を紹介する。
AfDをシーケンシャルな意思決定フレームワークで形式化し、報酬信号の欠如というユニークな課題を強調します。
そこで本研究では,AfD に適した報酬モデル上で補間を行う計算効率のよいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-24T15:13:53Z) - Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales [3.242050660144211]
ホック後説明可能性法は、ますます複雑なNLPモデルを理解するための重要なツールである。
本稿では,人間の判断を説明するテキストアノテーションをテキスト分類モデルに組み込む手法を提案する。
論文 参考訳(メタデータ) (2024-04-03T22:39:33Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Modeling Uncertainty in Personalized Emotion Prediction with Normalizing
Flows [6.32047610997385]
本研究では,条件付き正規化フローを用いて予測の不確かさを捉える新しい手法を提案する。
感情認識とヘイトスピーチを含む3つの主観的NLP課題に対して,本手法の有効性を検証した。
開発した手法によって得られた情報により,従来の手法を超越したハイブリッドモデルの構築が可能となった。
論文 参考訳(メタデータ) (2023-12-10T23:21:41Z) - Evaluating Concurrent Robustness of Language Models Across Diverse Challenge Sets [46.19529338280716]
言語モデルはブラックボックスの性質が特徴で、しばしば幻覚を呈し、入力の摂動に敏感である。
入力摂動が言語モデルにどう影響するかを,様々な尺度で検討する手法を提案する。
複数の摂動に対するロバスト性に対処するための3つの異なる微調整戦略を提案する。
論文 参考訳(メタデータ) (2023-11-15T02:59:10Z) - Shattering the Agent-Environment Interface for Fine-Tuning Inclusive
Language Models [24.107358120517336]
本研究では、事前学習された言語モデルが、それ自体がポリシー、報酬関数、遷移関数である、という新しい視点を採用する。
即ち、報酬学習と言語モデルの微調整は、さらに下流のポリシー最適化を必要とせずに、共同で直接行うことができる。
論文 参考訳(メタデータ) (2023-05-19T06:21:15Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
概念ベースの解釈可能性手法をNLPに拡張するための完全なフレームワークを提案する。
出力予測が大幅に変化する特徴を最適化する。
本手法は, ベースラインと比較して, 予測的影響, ユーザビリティ, 忠実度に関する優れた結果が得られる。
論文 参考訳(メタデータ) (2023-05-03T14:48:27Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task
Models [54.184609286094044]
補助モデルと付加データなしで問題を解くための学習パラダイムとして,ノイズエントロピー正規化(NoiER)を提案する。
提案手法は,従来の微調整モデルと比較して平均55%改善した。
論文 参考訳(メタデータ) (2021-08-29T06:58:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。