論文の概要: On Applying Bandit Algorithm to Fault Localization Techniques
- arxiv url: http://arxiv.org/abs/2409.06268v1
- Date: Tue, 10 Sep 2024 07:15:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 18:50:07.703338
- Title: On Applying Bandit Algorithm to Fault Localization Techniques
- Title(参考訳): Banditアルゴリズムのフォールトローカライゼーションへの応用について
- Authors: Masato Nakao, Kensei Hamamoto, Masateru Tsunoda, Amjed Tahir, Koji Toda, Akito Monden, Keitaro Nakasai, Kenichi Matsumoto,
- Abstract要約: 開発者は利用可能なものから高性能なフォールトローカライゼーション(FL)テクニックを選択する必要がある。
従来の手法では、1つのFL技術のみを選択して高い性能を達成することが期待されている。
本稿では,デバッグ作業中のFL手法を動的に選択する手法を提案する。
- 参考スコア(独自算出の注目度): 2.174219935131898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developers must select a high-performance fault localization (FL) technique from available ones. A conventional approach is to try to select only one FL technique that is expected to attain high performance before debugging activity. In contrast, we propose a new approach that dynamically selects better FL techniques during debugging activity.
- Abstract(参考訳): 開発者は利用可能なものから高性能なフォールトローカライゼーション(FL)テクニックを選択する必要がある。
従来の手法では,デバッグ動作前に高い性能を期待できるFLテクニックを1つだけ選択する。
対照的に,デバッグ時のFL手法を動的に選択する手法を提案する。
関連論文リスト
- Prompt Tuning with Diffusion for Few-Shot Pre-trained Policy Generalization [55.14484317645865]
我々は,オフライン強化学習タスクにおいて,例外的な品質向上を促す条件拡散モデルを構築した。
本稿では,Promptディフューザがプロンプトチューニングプロセスの堅牢かつ効果的なツールであることを示し,メタRLタスクにおいて高い性能を示す。
論文 参考訳(メタデータ) (2024-11-02T07:38:02Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - Exploiting Low-confidence Pseudo-labels for Source-free Object Detection [54.98300313452037]
Source-free Object Detection (SFOD) は、ラベル付きソースデータにアクセスすることなく、未ラベルのターゲットドメインにソーストレーニングされた検出器を適応することを目的としている。
現在のSFOD法は適応相におけるしきい値に基づく擬似ラベル手法を用いる。
疑似ラベルを最大限に活用するために,高信頼度と低信頼度しきい値を導入する手法を提案する。
論文 参考訳(メタデータ) (2023-10-19T12:59:55Z) - Optimizing NOTEARS Objectives via Topological Swaps [41.18829644248979]
本稿では,候補アルゴリズムの集合に有効な手法を提案する。
内部レベルでは、対象が与えられた場合、オフ・ザ・アート制約を利用する。
提案手法は,他のアルゴリズムのスコアを大幅に改善する。
論文 参考訳(メタデータ) (2023-05-26T21:49:37Z) - Boosting Performance of a Baseline Visual Place Recognition Technique by
Predicting the Maximally Complementary Technique [25.916992891359055]
最近の視覚的位置認識問題に対する有望な1つのアプローチは、複数の相補的なVPR手法の場所認識推定を融合させることである。
これらのアプローチでは、選択的に融合する前にすべての潜在的なVPRメソッドをブルートフォースで実行する必要がある。
ここでは、既知の単一ベースVPR技術から始まる別のアプローチを提案し、それと融合するために最も相補的な付加VPR技術を予測することを学ぶ。
論文 参考訳(メタデータ) (2022-10-14T04:32:23Z) - Learning (Local) Surrogate Loss Functions for Predict-Then-Optimize
Problems [58.954414264760956]
決定焦点学習(Decision-Focused Learning, DFL)は、予測モデルを下流の最適化タスクに調整するためのパラダイムである。
本稿では,(a)最適化問題を解き,一般化可能なブラックボックスオラクルへのアクセスのみを必要とする忠実なタスク固有サロゲートを学習し,(b)勾配で凸し,容易に最適化できる手法を提案する。
論文 参考訳(メタデータ) (2022-03-30T05:46:54Z) - Solving a class of non-convex min-max games using adaptive momentum
methods [9.538456363995161]
適応運動量法はディープニューラルネットワークに多くの注目を集めている。
本稿では,敵対ネットワークにおける適応運動量最小最適化問題を提案する。
実験の結果, vis-avis法が優れていることがわかった。
論文 参考訳(メタデータ) (2021-04-26T16:06:39Z) - Delayed Projection Techniques for Linearly Constrained Problems:
Convergence Rates, Acceleration, and Applications [24.763531954075656]
線形制約問題(LCP)に対する新しいプロジェクションベースアルゴリズムのクラスについて検討する。
そこで本研究では,射影を一時的に呼び出す遅延射影手法を提案し,射影周波数を下げ,射影効率を向上させる。
強凸, 一般凸のどちらの場合においても, 投射効率を向上させることが可能であることを示す。
論文 参考訳(メタデータ) (2021-01-05T13:42:41Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z) - Prophet: Proactive Candidate-Selection for Federated Learning by
Predicting the Qualities of Training and Reporting Phases [66.01459702625064]
5Gネットワークでは、トレーニングレイテンシは依然としてフェデレートラーニング(FL)が広く採用されるのを防ぐ障害である。
大きなレイテンシをもたらす最も基本的な問題の1つは、FLの悪い候補選択である。
本稿では,FLの有効候補選択について検討する。
論文 参考訳(メタデータ) (2020-02-03T06:40:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。