Context Enhancement with Reconstruction as Sequence for Unified Unsupervised Anomaly Detection
- URL: http://arxiv.org/abs/2409.06285v1
- Date: Tue, 10 Sep 2024 07:37:58 GMT
- Title: Context Enhancement with Reconstruction as Sequence for Unified Unsupervised Anomaly Detection
- Authors: Hui-Yue Yang, Hui Chen, Lihao Liu, Zijia Lin, Kai Chen, Liejun Wang, Jungong Han, Guiguang Ding,
- Abstract summary: Unsupervised anomaly detection (AD) aims to train robust detection models using only normal samples.
Recent research focuses on a unified unsupervised AD setting in which only one model is trained for all classes.
We introduce a novel Reconstruction as Sequence (RAS) method, which enhances the contextual correspondence during feature reconstruction.
- Score: 68.74469657656822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised anomaly detection (AD) aims to train robust detection models using only normal samples, while can generalize well to unseen anomalies. Recent research focuses on a unified unsupervised AD setting in which only one model is trained for all classes, i.e., n-class-one-model paradigm. Feature-reconstruction-based methods achieve state-of-the-art performance in this scenario. However, existing methods often suffer from a lack of sufficient contextual awareness, thereby compromising the quality of the reconstruction. To address this issue, we introduce a novel Reconstruction as Sequence (RAS) method, which enhances the contextual correspondence during feature reconstruction from a sequence modeling perspective. In particular, based on the transformer technique, we integrate a specialized RASFormer block into RAS. This block enables the capture of spatial relationships among different image regions and enhances sequential dependencies throughout the reconstruction process. By incorporating the RASFormer block, our RAS method achieves superior contextual awareness capabilities, leading to remarkable performance. Experimental results show that our RAS significantly outperforms competing methods, well demonstrating the effectiveness and superiority of our method. Our code is available at https://github.com/Nothingtolose9979/RAS.
Related papers
- Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - Learning Unified Reference Representation for Unsupervised Multi-class Anomaly Detection [38.07468257801517]
We present a novel unified feature reconstruction-based anomaly detection framework termed RLR.
RLR utilizes learnable reference representations to compel the model to learn normal feature patterns explicitly.
Evaluation of RLR on the 15-category MVTec-AD dataset and the 12-category VisA dataset shows superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-03-18T08:29:47Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
Anomaly detection in videos is a significant yet challenging problem.
Existing reconstruction-based methods rely on old-fashioned convolutional autoencoders.
We propose a new autoencoder model for enhanced consecutive frame reconstruction.
arXiv Detail & Related papers (2023-01-28T01:57:57Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
We propose a novel self-supervised framework to detect objects in degraded low resolution images.
Our methods has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-08-05T09:36:13Z) - ReDFeat: Recoupling Detection and Description for Multimodal Feature
Learning [51.07496081296863]
We recouple independent constraints of detection and description of multimodal feature learning with a mutual weighting strategy.
We propose a detector that possesses a large receptive field and is equipped with learnable non-maximum suppression layers.
We build a benchmark that contains cross visible, infrared, near-infrared and synthetic aperture radar image pairs for evaluating the performance of features in feature matching and image registration tasks.
arXiv Detail & Related papers (2022-05-16T04:24:22Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
arXiv Detail & Related papers (2021-11-17T13:30:31Z) - Novelty Detection via Non-Adversarial Generative Network [47.375591404354765]
A novel decoder-encoder framework is proposed for novelty detection task.
Under the non-adversarial framework, both latent space and image reconstruction space are jointly optimized.
Our model has the clear superiority over cutting-edge novelty detectors and achieves the state-of-the-art results on the datasets.
arXiv Detail & Related papers (2020-02-03T01:05:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.