論文の概要: One Policy to Run Them All: an End-to-end Learning Approach to Multi-Embodiment Locomotion
- arxiv url: http://arxiv.org/abs/2409.06366v1
- Date: Tue, 10 Sep 2024 09:44:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 18:19:52.463611
- Title: One Policy to Run Them All: an End-to-end Learning Approach to Multi-Embodiment Locomotion
- Title(参考訳): エンド・ツー・エンド・エンド・ラーニング・アプローチによるマルチ・エボディメント・ロコモーション
- Authors: Nico Bohlinger, Grzegorz Czechmanowski, Maciej Krupka, Piotr Kicki, Krzysztof Walas, Jan Peters, Davide Tateo,
- Abstract要約: 統一ロボット形態学アーキテクチャであるURMAを紹介する。
我々のフレームワークは、脚のあるロボットの領域にエンドツーエンドのマルチタスク強化学習アプローチをもたらす。
URMAはロボットプラットフォームに容易に移動可能な複数の実施形態の移動ポリシーを学習できることを示す。
- 参考スコア(独自算出の注目度): 18.556470359899855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Reinforcement Learning techniques are achieving state-of-the-art results in robust legged locomotion. While there exists a wide variety of legged platforms such as quadruped, humanoids, and hexapods, the field is still missing a single learning framework that can control all these different embodiments easily and effectively and possibly transfer, zero or few-shot, to unseen robot embodiments. We introduce URMA, the Unified Robot Morphology Architecture, to close this gap. Our framework brings the end-to-end Multi-Task Reinforcement Learning approach to the realm of legged robots, enabling the learned policy to control any type of robot morphology. The key idea of our method is to allow the network to learn an abstract locomotion controller that can be seamlessly shared between embodiments thanks to our morphology-agnostic encoders and decoders. This flexible architecture can be seen as a potential first step in building a foundation model for legged robot locomotion. Our experiments show that URMA can learn a locomotion policy on multiple embodiments that can be easily transferred to unseen robot platforms in simulation and the real world.
- Abstract(参考訳): 深層強化学習技術は、頑丈な足の移動において最先端の結果を達成する。
四足歩行、ヒューマノイド、ヘキサポッドなどの多種多様な脚を持つプラットフォームが存在するが、この分野には、これらの異なる実施物を簡単かつ効果的に制御できる単一の学習フレームワークがまだ欠けている。
本稿では,このギャップを埋めるために,統一ロボット形態学アーキテクチャであるURMAを紹介する。
筆者らのフレームワークは,脚ロボットの領域にエンド・ツー・エンドのマルチタスク強化学習アプローチを導入し,学習方針がロボット形態を制御できるようにする。
提案手法の鍵となる考え方は,形態に依存しないエンコーダとデコーダにより,ネットワークがエボディメント間でシームレスに共有できる抽象的な移動制御器を学習できるようにすることである。
この柔軟なアーキテクチャは、足歩行ロボットの移動の基礎モデルを構築するための第一歩となる可能性がある。
実験の結果,URMAは,シミュレーションや実世界において,見えないロボットプラットフォームに容易に移動可能な,複数の実施形態の移動ポリシーを学習できることが判明した。
関連論文リスト
- Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation [49.03165169369552]
さまざまな種類のロボットにまたがって単一のポリシーを訓練することによって、ロボット学習はより広範囲で多様なデータセットを活用することができる。
そこで我々はCrossFormerを提案する。CrossFormerはスケーラブルでフレキシブルなトランスフォーマーベースのポリシーで、どんな実施形態からでもデータを消費できる。
我々は、同じネットワークウェイトがシングルアームとデュアルアームの操作システム、車輪付きロボット、クワッドコプター、四足歩行など、非常に異なるロボットを制御できることを実証した。
論文 参考訳(メタデータ) (2024-08-21T17:57:51Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Universal Morphology Control via Contextual Modulation [52.742056836818136]
異なるロボット形態をまたいだ普遍的なポリシーの学習は、継続的な制御における学習効率と一般化を著しく向上させることができる。
既存の手法では、グラフニューラルネットワークやトランスフォーマーを使用して、異種状態と異なる形態のアクション空間を処理する。
本稿では,この依存関係を文脈変調によりモデル化する階層型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-22T00:04:12Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
四足歩行ロボットのための汎用ロコモーション(GenLoco)コントローラを訓練するためのフレームワークを提案する。
本フレームワークは,多種多様な四足歩行ロボットに展開可能な汎用ロコモーションコントローラを合成する。
我々のモデルは、より一般的な制御戦略を取得し、新しいシミュレーションロボットや実世界のロボットに直接移行できることを示す。
論文 参考訳(メタデータ) (2022-09-12T15:14:32Z) - MetaMorph: Learning Universal Controllers with Transformers [45.478223199658785]
ロボット工学では、主に1つのタスクのために1つのロボットを訓練します。
モジュラーロボットシステムは、汎用的なビルディングブロックをタスク最適化形態に柔軟な組み合わせを可能にする。
モジュール型ロボット設計空間上でユニバーサルコントローラを学習するためのトランスフォーマーベースのアプローチであるMetaMorphを提案する。
論文 参考訳(メタデータ) (2022-03-22T17:58:31Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
本研究は,バネ装荷逆振り子モデルを用いて学習プロセスを導くことで,移動における現実性を保証するための汎用的アプローチを提案する。
モデルのない設定であっても、2足歩行ロボットと4足歩行ロボットに対して、学習したポリシーが現実的でエネルギー効率のよい移動歩行を生成できることを示す実験結果を示す。
論文 参考訳(メタデータ) (2021-10-28T10:14:47Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
感覚運動制御における現在の主流パラダイムは、模倣であれ強化学習であれ、生の行動空間で政策を直接訓練することである。
軌道分布空間の予測を行うニューラル・ダイナミック・ポリシー(NDP)を提案する。
NDPは、いくつかのロボット制御タスクにおいて、効率と性能の両面で、これまでの最先端よりも優れている。
論文 参考訳(メタデータ) (2020-12-04T18:59:32Z) - Towards General and Autonomous Learning of Core Skills: A Case Study in
Locomotion [19.285099263193622]
我々は,足の広いロボットに対して,洗練された移動動作を学習できる学習フレームワークを開発した。
我々の学習フレームワークは、データ効率のよいマルチタスクRLアルゴリズムと、ロボット間で意味論的に同一の報酬関数のセットに依存している。
現実世界の四足ロボットを含む9種類のロボットに対して、同じアルゴリズムが、多種多様な再利用可能な運動スキルを迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2020-08-06T08:23:55Z) - Decentralized Deep Reinforcement Learning for a Distributed and Adaptive
Locomotion Controller of a Hexapod Robot [0.6193838300896449]
昆虫運動制御において,異なる脚の協調のための分散型組織を提案する。
同時的な局所構造は、歩行行動を改善することができる。
論文 参考訳(メタデータ) (2020-05-21T11:40:37Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
動物の多様でアジャイルな運動スキルを再現することは、ロボット工学における長年の課題である。
そこで本研究では,現実世界の動物を模倣することで,足のロボットがアジャイルな運動能力を学ぶことができる模倣学習システムを提案する。
論文 参考訳(メタデータ) (2020-04-02T02:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。