One Policy to Run Them All: an End-to-end Learning Approach to Multi-Embodiment Locomotion
- URL: http://arxiv.org/abs/2409.06366v2
- Date: Fri, 4 Oct 2024 14:56:10 GMT
- Title: One Policy to Run Them All: an End-to-end Learning Approach to Multi-Embodiment Locomotion
- Authors: Nico Bohlinger, Grzegorz Czechmanowski, Maciej Krupka, Piotr Kicki, Krzysztof Walas, Jan Peters, Davide Tateo,
- Abstract summary: We introduce URMA, the Unified Robot Morphology Architecture.
Our framework brings the end-to-end Multi-Task Reinforcement Learning approach to the realm of legged robots.
We show that URMA can learn a locomotion policy on multiple embodiments that can be easily transferred to unseen robot platforms.
- Score: 18.556470359899855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Reinforcement Learning techniques are achieving state-of-the-art results in robust legged locomotion. While there exists a wide variety of legged platforms such as quadruped, humanoids, and hexapods, the field is still missing a single learning framework that can control all these different embodiments easily and effectively and possibly transfer, zero or few-shot, to unseen robot embodiments. We introduce URMA, the Unified Robot Morphology Architecture, to close this gap. Our framework brings the end-to-end Multi-Task Reinforcement Learning approach to the realm of legged robots, enabling the learned policy to control any type of robot morphology. The key idea of our method is to allow the network to learn an abstract locomotion controller that can be seamlessly shared between embodiments thanks to our morphology-agnostic encoders and decoders. This flexible architecture can be seen as a potential first step in building a foundation model for legged robot locomotion. Our experiments show that URMA can learn a locomotion policy on multiple embodiments that can be easily transferred to unseen robot platforms in simulation and the real world.
Related papers
- Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation [49.03165169369552]
By training a single policy across many different kinds of robots, a robot learning method can leverage much broader and more diverse datasets.
We propose CrossFormer, a scalable and flexible transformer-based policy that can consume data from any embodiment.
We demonstrate that the same network weights can control vastly different robots, including single and dual arm manipulation systems, wheeled robots, quadcopters, and quadrupeds.
arXiv Detail & Related papers (2024-08-21T17:57:51Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Universal Morphology Control via Contextual Modulation [52.742056836818136]
Learning a universal policy across different robot morphologies can significantly improve learning efficiency and generalization in continuous control.
Existing methods utilize graph neural networks or transformers to handle heterogeneous state and action spaces across different morphologies.
We propose a hierarchical architecture to better model this dependency via contextual modulation.
arXiv Detail & Related papers (2023-02-22T00:04:12Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z) - MetaMorph: Learning Universal Controllers with Transformers [45.478223199658785]
In robotics we primarily train a single robot for a single task.
modular robot systems now allow for the flexible combination of general-purpose building blocks into task optimized morphologies.
We propose MetaMorph, a Transformer based approach to learn a universal controller over a modular robot design space.
arXiv Detail & Related papers (2022-03-22T17:58:31Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
This work proposes a generic approach for ensuring realism in locomotion by guiding the learning process with the spring-loaded inverted pendulum model as a reference.
We present experimental results showing that even in a model-free setup, the learned policies can generate realistic and energy-efficient locomotion gaits for a bipedal and a quadrupedal robot.
arXiv Detail & Related papers (2021-10-28T10:14:47Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
The current dominant paradigm in sensorimotor control, whether imitation or reinforcement learning, is to train policies directly in raw action spaces.
We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space.
NDPs outperform the prior state-of-the-art in terms of either efficiency or performance across several robotic control tasks.
arXiv Detail & Related papers (2020-12-04T18:59:32Z) - Towards General and Autonomous Learning of Core Skills: A Case Study in
Locomotion [19.285099263193622]
We develop a learning framework that can learn sophisticated locomotion behavior for a wide spectrum of legged robots.
Our learning framework relies on a data-efficient, off-policy multi-task RL algorithm and a small set of reward functions that are semantically identical across robots.
For nine different types of robots, including a real-world quadruped robot, we demonstrate that the same algorithm can rapidly learn diverse and reusable locomotion skills.
arXiv Detail & Related papers (2020-08-06T08:23:55Z) - Decentralized Deep Reinforcement Learning for a Distributed and Adaptive
Locomotion Controller of a Hexapod Robot [0.6193838300896449]
We propose a decentralized organization as found in insect motor control for coordination of different legs.
A concurrent local structure is able to learn better walking behavior.
arXiv Detail & Related papers (2020-05-21T11:40:37Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
Reproducing the diverse and agile locomotion skills of animals has been a longstanding challenge in robotics.
We present an imitation learning system that enables legged robots to learn agile locomotion skills by imitating real-world animals.
arXiv Detail & Related papers (2020-04-02T02:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.