MoRE: A Mixture of Reflectors Framework for Large Language Model-Based Sequential Recommendation
- URL: http://arxiv.org/abs/2409.06377v2
- Date: Sun, 13 Jul 2025 14:32:15 GMT
- Title: MoRE: A Mixture of Reflectors Framework for Large Language Model-Based Sequential Recommendation
- Authors: Weicong Qin, Yi Xu, Weijie Yu, Chenglei Shen, Xiao Zhang, Ming He, Jianping Fan, Jun Xu,
- Abstract summary: Large language models (LLMs) have emerged as a cutting-edge approach in sequential recommendation.<n>We propose MoRE, which introduces three perspective-aware offline reflection processes to address these gaps.<n>MoRE's meta-reflector employs a self-improving strategy and a dynamic selection mechanism to adapt to evolving user preferences.
- Score: 16.10791252542592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have emerged as a cutting-edge approach in sequential recommendation, leveraging historical interactions to model dynamic user preferences. Current methods mainly focus on learning processed recommendation data in the form of sequence-to-sequence text. While effective, they exhibit three key limitations: 1) failing to decouple intra-user explicit features (e.g., product titles) from implicit behavioral patterns (e.g., brand loyalty) within interaction histories; 2) underutilizing cross-user collaborative filtering (CF) signals; and 3) relying on inefficient reflection update strategies. To address this, We propose MoRE (Mixture of REflectors), which introduces three perspective-aware offline reflection processes to address these gaps. This decomposition directly resolves Challenges 1 (explicit/implicit ambiguity) and 2 (CF underutilization). Furthermore, MoRE's meta-reflector employs a self-improving strategy and a dynamic selection mechanism (Challenge 3) to adapt to evolving user preferences. First, two intra-user reflectors decouple explicit and implicit patterns from a user's interaction sequence, mimicking traditional recommender systems' ability to distinguish surface-level and latent preferences. A third cross-user reflector captures CF signals by analyzing user similarity patterns from multiple users' interactions. To optimize reflection quality, MoRE's meta-reflector employs a offline self-improving strategy that evaluates reflection impacts through comparisons of presence/absence and iterative refinement of old/new versions, with a online contextual bandit mechanism dynamically selecting the optimal perspective for recommendation for each user. Code: https://github.com/E-qin/MoRE-Rec.
Related papers
- LLM2Rec: Large Language Models Are Powerful Embedding Models for Sequential Recommendation [49.78419076215196]
Sequential recommendation aims to predict users' future interactions by modeling collaborative filtering (CF) signals from historical behaviors of similar users or items.<n>Traditional sequential recommenders rely on ID-based embeddings, which capture CF signals through high-order co-occurrence patterns.<n>Recent advances in large language models (LLMs) have motivated text-based recommendation approaches that derive item representations from textual descriptions.<n>We argue that an ideal embedding model should seamlessly integrate CF signals with rich semantic representations to improve both in-domain and out-of-domain recommendation performance.
arXiv Detail & Related papers (2025-06-16T13:27:06Z) - A Framework for Generating Conversational Recommendation Datasets from Behavioral Interactions [2.0693204407592836]
We present ConvRecStudio, a framework that simulates realistic, multi-turn dialogs grounded in timestamped user-item interactions and reviews.<n>We apply ConvRecStudio to three domains -- MobileRec, Yelp, and Amazon Electronics -- producing over 12K multi-turn dialogs per dataset.
arXiv Detail & Related papers (2025-06-14T22:58:48Z) - Embed Progressive Implicit Preference in Unified Space for Deep Collaborative Filtering [13.24227546548424]
Generalized Neural Ordinal Logistic Regression (GNOLR) is proposed to capture the structured progression of user engagement.<n>GNOLR enhances predictive accuracy, captures the progression of user engagement, and simplifies the retrieval process.<n>Experiments on ten real-world datasets show that GNOLR significantly outperforms state-of-the-art methods in efficiency and adaptability.
arXiv Detail & Related papers (2025-05-27T08:43:35Z) - AgentRecBench: Benchmarking LLM Agent-based Personalized Recommender Systems [17.329692234349768]
Agentic recommender systems are powered by Large Language Models (LLMs)<n>LLMs' advanced reasoning and role-playing capabilities enable autonomous, adaptive decision-making.<n>The field currently lacks standardized evaluation protocols to assess these methods.
arXiv Detail & Related papers (2025-05-26T07:45:11Z) - ThinkRec: Thinking-based recommendation via LLM [19.398302729633397]
ThinkRec is a thinking-based framework that shifts LLM4Rec from System 1 to System 2 (rational system)<n> ThinkRec introduces a thinking activation mechanism that augments item metadata with keyword summarization and injects synthetic reasoning traces.<n>By dynamically assigning weights to expert models based on users' latent features, ThinkRec adapts its reasoning path to individual users, thereby enhancing precision and personalization.
arXiv Detail & Related papers (2025-05-21T04:25:18Z) - Instruct-of-Reflection: Enhancing Large Language Models Iterative Reflection Capabilities via Dynamic-Meta Instruction [11.838351314880736]
Instruct-of-Reflection (IoRT) is a novel and general reflection framework that leverages dynamic-meta instruction to enhance the iterative reflection capability of Large Language Models (LLMs)
Our experiments demonstrate that IoRT achieves an average improvement of 10.1% over established baselines in mathematical and commonsense reasoning tasks.
arXiv Detail & Related papers (2025-03-02T14:02:03Z) - OneRec: Unifying Retrieve and Rank with Generative Recommender and Iterative Preference Alignment [9.99840965933561]
We propose OneRec, which replaces the cascaded learning framework with a unified generative model.
OneRec includes: 1) an encoder-decoder structure, which encodes the user's historical behavior sequences and gradually decodes the videos that the user may be interested in.
arXiv Detail & Related papers (2025-02-26T09:25:10Z) - RALLRec: Improving Retrieval Augmented Large Language Model Recommendation with Representation Learning [24.28601381739682]
Large Language Models (LLMs) have been integrated into recommendation systems to enhance user behavior comprehension.
Existing RAG methods rely primarily on textual semantics and often fail to incorporate the most relevant items.
We propose Representation learning for retrieval-Augmented Large Language model Recommendation (RALLRec)
arXiv Detail & Related papers (2025-02-10T02:15:12Z) - Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment [69.11529841118671]
We propose a new Deliberative Recommendation task, which incorporates explicit reasoning about user preferences as an additional alignment goal.
We then introduce the Reasoning-powered Recommender framework for deliberative user preference alignment.
arXiv Detail & Related papers (2025-02-04T07:17:54Z) - Enhancing User Intent for Recommendation Systems via Large Language Models [0.0]
DUIP is a novel framework that combines LSTM networks with Large Language Models (LLMs) to dynamically capture user intent and generate personalized item recommendations.<n>Our findings suggest that DUIP is a promising approach for next-generation recommendation systems, with potential for further improvements in cross-modal recommendations and scalability.
arXiv Detail & Related papers (2025-01-18T20:35:03Z) - Meta-Reflection: A Feedback-Free Reflection Learning Framework [57.14485943991588]
We propose Meta-Reflection, a feedback-free reflection mechanism that requires only a single inference pass without external feedback.
Motivated by the human ability to remember and retrieve reflections from past experiences, Meta-Reflection integrates reflective insights into a codebook.
To thoroughly investigate and evaluate the practicality of Meta-Reflection in real-world scenarios, we introduce an industrial e-commerce benchmark named E-commerce Customer Intent Detection.
arXiv Detail & Related papers (2024-12-18T12:20:04Z) - PRefLexOR: Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning and Agentic Thinking [0.0]
PRefLexOR combines preference optimization with concepts from Reinforcement Learning to enable models to self-teach.
We focus on applications in biological materials science and demonstrate the method in a variety of case studies.
arXiv Detail & Related papers (2024-10-16T08:46:26Z) - Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity.
We present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of Sequential Recommender Systems.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - Towards Flexible Interactive Reflection Removal with Human Guidance [75.38207315080624]
Single image reflection removal is inherently ambiguous, as both the reflection and transmission components requiring separation may follow natural image statistics.
Existing methods attempt to address the issue by using various types of low-level and physics-based cues as sources of reflection signals.
In this paper, we aim to explore a novel flexible interactive reflection removal approach that leverages various forms of sparse human guidance.
arXiv Detail & Related papers (2024-06-03T17:34:37Z) - Enhancing Sequential Recommender with Large Language Models for Joint Video and Comment Recommendation [77.42486522565295]
We propose a novel recommendation approach called LSVCR to jointly perform personalized video and comment recommendation.<n>Our approach comprises two key components: sequential recommendation (SR) model and supplemental large language model (LLM) recommender.<n>In particular, we attain a cumulative gain of 4.13% in comment watch time.
arXiv Detail & Related papers (2024-03-20T13:14:29Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - DRDT: Dynamic Reflection with Divergent Thinking for LLM-based
Sequential Recommendation [53.62727171363384]
We introduce a novel reasoning principle: Dynamic Reflection with Divergent Thinking.
Our methodology is dynamic reflection, a process that emulates human learning through probing, critiquing, and reflecting.
We evaluate our approach on three datasets using six pre-trained LLMs.
arXiv Detail & Related papers (2023-12-18T16:41:22Z) - Representation Learning with Large Language Models for Recommendation [34.46344639742642]
We propose a model-agnostic framework RLMRec to enhance recommenders with large language models (LLMs)empowered representation learning.
RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals.
arXiv Detail & Related papers (2023-10-24T15:51:13Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Rec is a user simulator in recommendation based on Large Language Models.
Each agent interacts with personalized recommender models in a page-by-page manner.
arXiv Detail & Related papers (2023-10-16T06:41:16Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input.
We propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies.
arXiv Detail & Related papers (2023-08-07T12:26:34Z) - Generative Slate Recommendation with Reinforcement Learning [49.75985313698214]
reinforcement learning algorithms can be used to optimize user engagement in recommender systems.
However, RL approaches are intractable in the slate recommendation scenario.
In that setting, an action corresponds to a slate that may contain any combination of items.
In this work we propose to encode slates in a continuous, low-dimensional latent space learned by a variational auto-encoder.
We are able to (i) relax assumptions required by previous work, and (ii) improve the quality of the action selection by modeling full slates.
arXiv Detail & Related papers (2023-01-20T15:28:09Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
We propose self-supervised reinforcement learning for sequential recommendation tasks.
Our approach augments standard recommendation models with two output layers: one for self-supervised learning and the other for RL.
Based on such an approach, we propose two frameworks namely Self-Supervised Q-learning(SQN) and Self-Supervised Actor-Critic(SAC)
arXiv Detail & Related papers (2020-06-10T11:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.