論文の概要: AMNS: Attention-Weighted Selective Mask and Noise Label Suppression for Text-to-Image Person Retrieval
- arxiv url: http://arxiv.org/abs/2409.06385v2
- Date: Wed, 11 Sep 2024 02:45:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 13:13:20.766177
- Title: AMNS: Attention-Weighted Selective Mask and Noise Label Suppression for Text-to-Image Person Retrieval
- Title(参考訳): AMNS:テキスト・画像検索のための注意重み付き選択マスクとノイズラベル抑圧
- Authors: Runqing Zhang, Xue Zhou,
- Abstract要約: 画像品質の低下と誤ラベルのため、画像テキストペアに相関性や偽相関性の問題が発生する。
本稿では,新しいノイズラベル抑制手法を提案し,ランダムマスクによって生じる問題を緩和する。
- 参考スコア(独自算出の注目度): 3.591122855617648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image person retrieval aims to retrieve images of person given textual descriptions, and most methods implicitly assume that the training image-text pairs are correctly aligned, but in practice, under-correlated and false-correlated problems arise for image-text pairs due to poor image quality and mislabeling. Meanwhile, the random masking augmentation strategy may incorrectly discard semantic content resulting in the problem of generating noisy pairings between image lexical elements and text descriptions. To solve these two problems, we propose a new noise label suppression method and alleviate the problem generated by random mask through an attention-weighted selective mask strategy. In the proposed noise label suppression method, the effect of noise labels is suppressed by preventing the model from being overconfident by considering the inverse KL scatter loss, which is combined with the weight adjustment focus loss to further improve the model's recognition ability on difficult samples. On the other hand, Attention-Weighted Selective Mask processes the raw image through the EMA version of the image encoder, retaining some of the tokens with strong semantic associations with the corresponding text descriptions in order to extract better features. Numerous experiments validate the effectiveness of our approach in terms of dealing with noisy problems. The code will be available soon at https://github.com/RunQing715/AMNS.git.
- Abstract(参考訳): テキスト・トゥ・イメージ・パーソン検索は、与えられたテキスト記述を検索することを目的としており、ほとんどの手法では、トレーニング用画像・テキストペアが正しく一致していると暗黙的に仮定するが、実際には、画像品質と誤ラベルが原因で、画像・テキストペアに対して非相関性および偽相関性の問題が発生する。
一方、ランダムマスキング強化戦略は、画像の語彙要素とテキスト記述との間のノイズの多いペアリングを発生させる問題となる意味的コンテンツを誤って破棄する可能性がある。
これら2つの問題を解決するため、注意重み付き選択マスク戦略により、ランダムマスクが生み出す問題を緩和する新しいノイズラベル抑制手法を提案する。
ノイズラベル抑制法では、逆KL散乱損失と重み調整焦点損失を組み合わせた逆KL散乱損失を考慮してモデルが過信されることを防止し、より難しいサンプルに対するモデルの認識能力を向上することにより、ノイズラベルの効果を抑制する。
一方、Attention-Weighted Selective Maskは、画像エンコーダのEMAバージョンを介して生画像を処理する。
多くの実験でノイズ問題に対処する手法の有効性が検証されている。
コードは近々https://github.com/RunQing715/AMNS.git.comで公開される。
関連論文リスト
- SyncMask: Synchronized Attentional Masking for Fashion-centric Vision-Language Pretraining [2.9010546489056415]
視覚言語モデル (VLM) は、ペア化されたデータセットを通して、モーダル間理解において大きな進歩を遂げた。
ファッション領域では、データセットは画像とテキストで伝達される情報の間に相違を示すことが多い。
我々は、画像パッチと単語トークンをピンポイントするマスクを生成するシンクロナイズドアテンショナルマスキング(SyncMask)を提案する。
論文 参考訳(メタデータ) (2024-04-01T15:01:38Z) - Open-Vocabulary Segmentation with Unpaired Mask-Text Supervision [87.15580604023555]
Unpair-Segは、弱制御されたオープン語彙セグメンテーションフレームワークである。
未ペア画像マスクと画像テキストペアから学習し、独立して効率的に収集することができる。
ADE-847とPASCAL Context-459データセットで14.6%と19.5%のmIoUを達成した。
論文 参考訳(メタデータ) (2024-02-14T06:01:44Z) - Text Augmented Spatial-aware Zero-shot Referring Image Segmentation [60.84423786769453]
テキスト拡張空間認識(TAS)ゼロショット参照画像セグメンテーションフレームワークを提案する。
TASには、例レベルのマスク抽出のためのマスク提案ネットワーク、画像テキスト相関をマイニングするためのテキスト拡張ビジュアルテキストマッチングスコア、マスク後処理のための空間が含まれている。
提案手法は,最先端のゼロショット参照画像セグメンテーション法より明らかに優れている。
論文 参考訳(メタデータ) (2023-10-27T10:52:50Z) - MaskDiffusion: Boosting Text-to-Image Consistency with Conditional Mask [84.84034179136458]
テキスト・イメージのミスマッチ問題に繋がる重要な要因は、モダリティ間の関係学習の不十分さである。
本稿では,注目マップと迅速な埋め込みを条件とした適応マスクを提案し,画像特徴に対する各テキストトークンの寄与度を動的に調整する。
この手法はMaskDiffusionと呼ばれ、トレーニング不要で、一般的な事前学習拡散モデルに対してホットプラグ可能である。
論文 参考訳(メタデータ) (2023-09-08T15:53:37Z) - Block the Label and Noise: An N-Gram Masked Speller for Chinese Spell
Checking [0.0]
本稿では, ラベルの漏洩や誤検出を回避するため, 電流や周辺トークンをマスキングするn-gramマスキング層を提案する。
SIGHANデータセットの実験では、プラグ可能なn-gramマスキング機構により、一般的なCSCモデルの性能が向上することを示した。
論文 参考訳(メタデータ) (2023-05-05T06:43:56Z) - Discriminative Class Tokens for Text-to-Image Diffusion Models [107.98436819341592]
自由形式のテキストの表現可能性を利用した非侵襲的な微調整手法を提案する。
本手法は,従来の微調整法と比較して高速で,クラス内の画像の収集を必要としない。
i)標準拡散モデルよりも正確で高品質な生成画像,(ii)低リソース環境でのトレーニングデータの拡張,および(iii)誘導分類器の訓練に使用されるデータ情報を明らかにする。
論文 参考訳(メタデータ) (2023-03-30T05:25:20Z) - NLIP: Noise-robust Language-Image Pre-training [95.13287735264937]
雑音調和と雑音補完という2つの手法を用いて事前学習の安定化を図るため,NLIPの原理的手法を提案する。
我々のNLIPは、画像テキスト事前学習における一般的なノイズ効果をより効率的に軽減することができる。
論文 参考訳(メタデータ) (2022-12-14T08:19:30Z) - Open-Vocabulary Instance Segmentation via Robust Cross-Modal
Pseudo-Labeling [61.03262873980619]
Open-vocabularyのインスタンスセグメンテーションは、マスクアノテーションなしで新しいクラスをセグメンテーションすることを目的としている。
本研究では,字幕内の単語の意味を画像中のオブジェクトマスクの視覚的特徴と整合させることで,擬似マスクの訓練を行うクロスモーダルな擬似ラベルフレームワークを提案する。
我々のフレームワークは、生徒の自己学習のための単語意味論を通じて、キャプションに新しいクラスをラベル付けすることができる。
論文 参考訳(メタデータ) (2021-11-24T18:50:47Z) - Few-shot Semantic Image Synthesis Using StyleGAN Prior [8.528384027684192]
本稿では,STYPEGANを用いたセマンティックマスクの擬似ラベリングを行うトレーニング戦略を提案する。
私たちの重要なアイデアは、semantic masksの例から、スタイルガン機能と各セマンティッククラスの単純なマッピングを構築することです。
擬似セマンティックマスクは、ピクセル整列マスクを必要とする従来のアプローチでは粗いかもしれないが、我々のフレームワークは、濃密なセマンティックマスクだけでなく、ランドマークやスクリブルのようなスパース入力から高品質な画像を合成することができる。
論文 参考訳(メタデータ) (2021-03-27T11:04:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。