論文の概要: AMNS: Attention-Weighted Selective Mask and Noise Label Suppression for Text-to-Image Person Retrieval
- arxiv url: http://arxiv.org/abs/2409.06385v3
- Date: Sat, 08 Feb 2025 03:45:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:25:27.182348
- Title: AMNS: Attention-Weighted Selective Mask and Noise Label Suppression for Text-to-Image Person Retrieval
- Title(参考訳): AMNS:テキスト・画像検索のための注意重み付き選択マスクとノイズラベル抑圧
- Authors: Runqing Zhang, Xue Zhou,
- Abstract要約: ノイズ対応(NC)問題は画像品質の低下とラベルの誤りによる。
ランダムマスキングの強化は、必然的に重要なセマンティックコンテンツを捨てる可能性がある。
双方向類似分布マッチング(BSDM)損失は、正のペアから効果的に学習することを可能にする。
重み調整焦点(WAF)の損失により、モデルのハードサンプル処理能力が向上する。
- 参考スコア(独自算出の注目度): 3.591122855617648
- License:
- Abstract: Most existing text-to-image person retrieval methods usually assume that the training image-text pairs are perfectly aligned; however, the noisy correspondence(NC) issue (i.e., incorrect or unreliable alignment) exists due to poor image quality and labeling errors. Additionally, random masking augmentation may inadvertently discard critical semantic content, introducing noisy matches between images and text descriptions. To address the above two challenges, we propose a noise label suppression method to mitigate NC and an Attention-Weighted Selective Mask (AWM) strategy to resolve the issues caused by random masking. Specifically, the Bidirectional Similarity Distribution Matching (BSDM) loss enables the model to effectively learn from positive pairs while preventing it from over-relying on them, thereby mitigating the risk of overfitting to noisy labels. In conjunction with this, Weight Adjustment Focal (WAF) loss improves the model's ability to handle hard samples. Furthermore, AWM processes raw images through an EMA version of the image encoder, selectively retaining tokens with strong semantic connections to the text, enabling better feature extraction. Extensive experiments demonstrate the effectiveness of our approach in addressing noise-related issues and improving retrieval performance.
- Abstract(参考訳): 既存のテキストと画像の人物の検索方法の多くは、トレーニング画像とテキストのペアが完全に一致していると仮定するが、ノイズ対応(NC)問題(すなわち、誤りまたは信頼性の低いアライメント)は、画像の品質やラベルの誤りによって存在する。
さらに、ランダムなマスキングの強化は必然的に重要なセマンティックコンテンツを破棄し、画像とテキスト記述間のノイズの多いマッチングを導入する。
上記の2つの課題に対処するために,NCとAWM戦略を緩和するノイズラベル抑制手法を提案する。
具体的には、二方向類似性分布マッチング(BSDM)の損失により、モデルが正のペアから効果的に学習し、過度なラベルへの過度な適合のリスクを軽減できる。
これと合わせて、WAF(Weight Adjustment Focal)の損失により、モデルのハードサンプル処理能力が向上する。
さらに、AWMは、画像エンコーダのEMAバージョンを介して生画像を処理し、テキストに強い意味的接続を持つトークンを選択的に保持し、より良い特徴抽出を可能にする。
広汎な実験により,ノイズ関連問題に対処し,検索性能を向上させるためのアプローチの有効性が示された。
関連論文リスト
- SyncMask: Synchronized Attentional Masking for Fashion-centric Vision-Language Pretraining [2.9010546489056415]
視覚言語モデル (VLM) は、ペア化されたデータセットを通して、モーダル間理解において大きな進歩を遂げた。
ファッション領域では、データセットは画像とテキストで伝達される情報の間に相違を示すことが多い。
我々は、画像パッチと単語トークンをピンポイントするマスクを生成するシンクロナイズドアテンショナルマスキング(SyncMask)を提案する。
論文 参考訳(メタデータ) (2024-04-01T15:01:38Z) - Open-Vocabulary Segmentation with Unpaired Mask-Text Supervision [87.15580604023555]
Unpair-Segは、弱制御されたオープン語彙セグメンテーションフレームワークである。
未ペア画像マスクと画像テキストペアから学習し、独立して効率的に収集することができる。
ADE-847とPASCAL Context-459データセットで14.6%と19.5%のmIoUを達成した。
論文 参考訳(メタデータ) (2024-02-14T06:01:44Z) - Text Augmented Spatial-aware Zero-shot Referring Image Segmentation [60.84423786769453]
テキスト拡張空間認識(TAS)ゼロショット参照画像セグメンテーションフレームワークを提案する。
TASには、例レベルのマスク抽出のためのマスク提案ネットワーク、画像テキスト相関をマイニングするためのテキスト拡張ビジュアルテキストマッチングスコア、マスク後処理のための空間が含まれている。
提案手法は,最先端のゼロショット参照画像セグメンテーション法より明らかに優れている。
論文 参考訳(メタデータ) (2023-10-27T10:52:50Z) - MaskDiffusion: Boosting Text-to-Image Consistency with Conditional Mask [84.84034179136458]
テキスト・イメージのミスマッチ問題に繋がる重要な要因は、モダリティ間の関係学習の不十分さである。
本稿では,注目マップと迅速な埋め込みを条件とした適応マスクを提案し,画像特徴に対する各テキストトークンの寄与度を動的に調整する。
この手法はMaskDiffusionと呼ばれ、トレーニング不要で、一般的な事前学習拡散モデルに対してホットプラグ可能である。
論文 参考訳(メタデータ) (2023-09-08T15:53:37Z) - Block the Label and Noise: An N-Gram Masked Speller for Chinese Spell
Checking [0.0]
本稿では, ラベルの漏洩や誤検出を回避するため, 電流や周辺トークンをマスキングするn-gramマスキング層を提案する。
SIGHANデータセットの実験では、プラグ可能なn-gramマスキング機構により、一般的なCSCモデルの性能が向上することを示した。
論文 参考訳(メタデータ) (2023-05-05T06:43:56Z) - Discriminative Class Tokens for Text-to-Image Diffusion Models [107.98436819341592]
自由形式のテキストの表現可能性を利用した非侵襲的な微調整手法を提案する。
本手法は,従来の微調整法と比較して高速で,クラス内の画像の収集を必要としない。
i)標準拡散モデルよりも正確で高品質な生成画像,(ii)低リソース環境でのトレーニングデータの拡張,および(iii)誘導分類器の訓練に使用されるデータ情報を明らかにする。
論文 参考訳(メタデータ) (2023-03-30T05:25:20Z) - NLIP: Noise-robust Language-Image Pre-training [95.13287735264937]
雑音調和と雑音補完という2つの手法を用いて事前学習の安定化を図るため,NLIPの原理的手法を提案する。
我々のNLIPは、画像テキスト事前学習における一般的なノイズ効果をより効率的に軽減することができる。
論文 参考訳(メタデータ) (2022-12-14T08:19:30Z) - Open-Vocabulary Instance Segmentation via Robust Cross-Modal
Pseudo-Labeling [61.03262873980619]
Open-vocabularyのインスタンスセグメンテーションは、マスクアノテーションなしで新しいクラスをセグメンテーションすることを目的としている。
本研究では,字幕内の単語の意味を画像中のオブジェクトマスクの視覚的特徴と整合させることで,擬似マスクの訓練を行うクロスモーダルな擬似ラベルフレームワークを提案する。
我々のフレームワークは、生徒の自己学習のための単語意味論を通じて、キャプションに新しいクラスをラベル付けすることができる。
論文 参考訳(メタデータ) (2021-11-24T18:50:47Z) - Few-shot Semantic Image Synthesis Using StyleGAN Prior [8.528384027684192]
本稿では,STYPEGANを用いたセマンティックマスクの擬似ラベリングを行うトレーニング戦略を提案する。
私たちの重要なアイデアは、semantic masksの例から、スタイルガン機能と各セマンティッククラスの単純なマッピングを構築することです。
擬似セマンティックマスクは、ピクセル整列マスクを必要とする従来のアプローチでは粗いかもしれないが、我々のフレームワークは、濃密なセマンティックマスクだけでなく、ランドマークやスクリブルのようなスパース入力から高品質な画像を合成することができる。
論文 参考訳(メタデータ) (2021-03-27T11:04:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。