論文の概要: Functionally Constrained Algorithm Solves Convex Simple Bilevel Problems
- arxiv url: http://arxiv.org/abs/2409.06530v2
- Date: Fri, 08 Nov 2024 00:49:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:52:50.383030
- Title: Functionally Constrained Algorithm Solves Convex Simple Bilevel Problems
- Title(参考訳): 関数的制約付きアルゴリズムは単純二値問題に収束する
- Authors: Huaqing Zhang, Lesi Chen, Jing Xu, Jingzhao Zhang,
- Abstract要約: 単純な二段階問題の近似的最適値は、一階ゼロ参照アルゴリズムでは得られないことを示す。
機能的に制約された問題に書き換えることにより、滑らかで非滑らかな問題に対して、新しい近似手法を提案する。
- 参考スコア(独自算出の注目度): 17.405138058942317
- License:
- Abstract: This paper studies simple bilevel problems, where a convex upper-level function is minimized over the optimal solutions of a convex lower-level problem. We first show the fundamental difficulty of simple bilevel problems, that the approximate optimal value of such problems is not obtainable by first-order zero-respecting algorithms. Then we follow recent works to pursue the weak approximate solutions. For this goal, we propose novel near-optimal methods for smooth and nonsmooth problems by reformulating them into functionally constrained problems.
- Abstract(参考訳): 本稿では、凸上層関数が凸下層問題の最適解に対して最小化される単純な二層問題について検討する。
まず、単純な二値問題の基本的難しさを示し、そのような問題の近似的最適値は、一階ゼロ参照アルゴリズムでは得られないことを示す。
次に、弱近似解を追求する最近の研究に従う。
この目的のために,機能的制約のある問題に再構成することで,スムーズで非滑らかな問題に対して,新しい近似手法を提案する。
関連論文リスト
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
本稿では,アルゴリズムが検索対象関数の雑音評価にのみアクセス可能な2次スムーズかつ強い凸関数を最適化する問題を考察する。
本研究は, ミニマックス単純後悔率について, 一致した上界と下界を発達させることにより, 初めて厳密な評価を行ったものである。
論文 参考訳(メタデータ) (2024-06-28T02:56:22Z) - Constrained Bi-Level Optimization: Proximal Lagrangian Value function
Approach and Hessian-free Algorithm [8.479947546216131]
We developed a Hessian-free gradient-based algorithm-termed proximal Lagrangian Value function-based Hessian-free Bi-level Algorithm (LV-HBA)
LV-HBAは特に機械学習アプリケーションに適している。
論文 参考訳(メタデータ) (2024-01-29T13:50:56Z) - Invex Programs: First Order Algorithms and Their Convergence [66.40124280146863]
Invexプログラムは、固定点ごとに世界最小値が得られる特別な非制約問題である。
そこで我々は,超凸問題における一般収束率を解くために,新しい一階法アルゴリズムを提案する。
提案アルゴリズムは,制約付き凸プログラムを解く最初のアルゴリズムである。
論文 参考訳(メタデータ) (2023-07-10T10:11:01Z) - A Generalized Alternating Method for Bilevel Learning under the
Polyak-{\L}ojasiewicz Condition [63.66516306205932]
バイレベル最適化は、その新興機械学習分野への応用により、最近、関心を取り戻している。
最近の結果は、単純な反復に基づくイテレーションは、低レベルな目標の凸に起因する利害と一致することを示しています。
論文 参考訳(メタデータ) (2023-06-04T17:54:11Z) - Oracle Complexity of Single-Loop Switching Subgradient Methods for
Non-Smooth Weakly Convex Functional Constrained Optimization [12.84152722535866]
目的関数が弱凸あるいは弱凸である非制約最適化問題を考える。
そこで本研究では,一階調律であり,実装が容易な段階的手法について考察する。
論文 参考訳(メタデータ) (2023-01-30T22:13:14Z) - A Single-Loop Gradient Descent and Perturbed Ascent Algorithm for
Nonconvex Functional Constrained Optimization [27.07082875330508]
制約のない不等式問題は、マルチクラスネイマンオラクルのような多くの機械学習問題をモデル化するために用いられる。
このような緩やかな規則性の条件下では、値損失の交互化と制約違反の低減のバランスをとることは困難である。
本稿では,新しい不等式制約問題アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-12T16:30:34Z) - A Conditional Gradient-based Method for Simple Bilevel Optimization with
Convex Lower-level Problem [18.15207779559351]
そこで本稿では, 切削平面による下層問題の解集合を局所的に近似する二段階最適化手法を提案する。
本手法は,二段階問題のクラスについて,最もよく知られた仮定を導出する。
論文 参考訳(メタデータ) (2022-06-17T16:12:47Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
そこで本研究では,両レベル問題を等価な制約付き最適化に変換する手法を提案する。
このようなアプローチには、(a)多重内極小問題への対処、(b)ジャコビアン計算のない完全一階効率など、いくつかの利点がある。
論文 参考訳(メタデータ) (2022-03-01T18:20:01Z) - Randomized Stochastic Variance-Reduced Methods for Stochastic Bilevel
Optimization [62.87181271021217]
機械学習に多くの応用がある非SBO問題を考察する。
本稿では,非SBO問題に対する高速ランダム化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-05T18:28:42Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。