論文の概要: DemoStart: Demonstration-led auto-curriculum applied to sim-to-real with multi-fingered robots
- arxiv url: http://arxiv.org/abs/2409.06613v2
- Date: Thu, 12 Sep 2024 23:01:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 11:48:15.928828
- Title: DemoStart: Demonstration-led auto-curriculum applied to sim-to-real with multi-fingered robots
- Title(参考訳): DemoStart:マルチフィンガーロボットによるsim-to-realへの応用
- Authors: Maria Bauza, Jose Enrique Chen, Valentin Dalibard, Nimrod Gileadi, Roland Hafner, Murilo F. Martins, Joss Moore, Rugile Pevceviciute, Antoine Laurens, Dushyant Rao, Martina Zambelli, Martin Riedmiller, Jon Scholz, Konstantinos Bousmalis, Francesco Nori, Nicolas Heess,
- Abstract要約: 3本指ロボットハンドを装備した腕の複雑な操作動作を学習できる新しい自己カリキュラム強化学習法であるDemoStartを提案する。
シミュレーションからの学習は、行動生成のサイクルを劇的に減らし、ドメインランダム化技術を利用して、ゼロショット・シム・トゥ・リアル転送を成功させる。
- 参考スコア(独自算出の注目度): 15.034811470942962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present DemoStart, a novel auto-curriculum reinforcement learning method capable of learning complex manipulation behaviors on an arm equipped with a three-fingered robotic hand, from only a sparse reward and a handful of demonstrations in simulation. Learning from simulation drastically reduces the development cycle of behavior generation, and domain randomization techniques are leveraged to achieve successful zero-shot sim-to-real transfer. Transferred policies are learned directly from raw pixels from multiple cameras and robot proprioception. Our approach outperforms policies learned from demonstrations on the real robot and requires 100 times fewer demonstrations, collected in simulation. More details and videos in https://sites.google.com/view/demostart.
- Abstract(参考訳): 本稿では,3本指ロボットハンドを装備したアーム上での複雑な操作動作を,スパース報酬とシミュレーションにおける少数の実演から学習する,新しい自己カリキュラム強化学習手法であるDemoStartを提案する。
シミュレーションからの学習は、行動生成のサイクルを劇的に減らし、ドメインランダム化技術を活用して、ゼロショット・シム・トゥ・リアル転送を成功させる。
転送されたポリシーは、複数のカメラとロボットのプロプリセプションから生のピクセルから直接学習される。
提案手法は実ロボットの実証から学んだポリシーを上回り,シミュレーションで収集した100倍のデモを必要とする。
詳しくはhttps://sites.google.com/view/demostart.comを参照のこと。
関連論文リスト
- DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGenは、微分可能な物理シミュレーション、微分可能なレンダリング、ビジョン言語モデルを統合する新しいフレームワークである。
言語命令の埋め込みとシミュレートされた観察の埋め込みとの距離を最小化することにより、現実的なロボットデモを生成することができる。
実験によると、DiffGenを使えば、人間の努力やトレーニング時間を最小限に抑えて、ロボットデータを効率よく、効果的に生成できる。
論文 参考訳(メタデータ) (2024-05-12T15:38:17Z) - MimicGen: A Data Generation System for Scalable Robot Learning using
Human Demonstrations [55.549956643032836]
MimicGenは、少数の人間のデモから大規模でリッチなデータセットを自動的に合成するシステムである。
ロボットエージェントは,この生成したデータセットを模倣学習により効果的に訓練し,長期的・高精度なタスクにおいて高い性能を達成することができることを示す。
論文 参考訳(メタデータ) (2023-10-26T17:17:31Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Cross-Domain Transfer via Semantic Skill Imitation [49.83150463391275]
本稿では、例えば人間ビデオなどのソースドメインからのデモンストレーションを利用して、強化学習(RL)を高速化する意味模倣手法を提案する。
関節速度のような低レベルな動作を模倣する代わりに、我々のアプローチは「電子レンジを開く」や「ストーブを回す」といった、実証された意味的なスキルのシーケンスを模倣する。
論文 参考訳(メタデータ) (2022-12-14T18:46:14Z) - Signs of Language: Embodied Sign Language Fingerspelling Acquisition
from Demonstrations for Human-Robot Interaction [1.0166477175169308]
本稿では,ビデオ例からデキスタスモータの模倣を学習する手法を提案する。
まず,関節に1つのアクチュエータを備えたロボットハンドのURDFモデルを構築した。
トレーニング済みのディープビジョンモデルを利用して、RGBビデオから手の3Dポーズを抽出する。
論文 参考訳(メタデータ) (2022-09-12T10:42:26Z) - From One Hand to Multiple Hands: Imitation Learning for Dexterous
Manipulation from Single-Camera Teleoperation [26.738893736520364]
我々は,iPadとコンピュータのみで3Dデモを効率的に収集する,新しい単一カメラ遠隔操作システムを提案する。
我々は,操作者の手の構造と形状が同じであるマニピュレータである物理シミュレータにおいて,各ユーザ向けにカスタマイズされたロボットハンドを構築する。
データを用いた模倣学習では、複数の複雑な操作タスクでベースラインを大幅に改善する。
論文 参考訳(メタデータ) (2022-04-26T17:59:51Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
ディープラーニングがロボティクス研究のパラダイムシフトを引き起こし、大量のデータを必要とする方法が好まれている。
最先端のアプローチは、データ生成が高速かつ安価であるシミュレーションで学ぶ。
本稿では,ランダム化シミュレーションから学習する手法である「領域ランダム化」に焦点をあてる。
論文 参考訳(メタデータ) (2021-11-01T13:55:41Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
我々は,実世界の長距離ロボット操作作業に,スキル発見による取り組みを行う。
未解決のデモンストレーションから再利用可能なスキルのライブラリを学ぶためのボトムアップアプローチを提案する。
提案手法は,多段階操作タスクにおける最先端の模倣学習手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-28T16:18:54Z) - DexMV: Imitation Learning for Dexterous Manipulation from Human Videos [11.470141313103465]
本稿では,コンピュータビジョンとロボット学習のギャップを埋めるために,新しいプラットフォームとパイプラインであるDexMVを提案する。
i)多指ロボットハンドによる複雑な操作タスクのシミュレーションシステムと,(ii)人間の手による大規模な実演を記録するコンピュータビジョンシステムとを設計する。
実演ではロボット学習を大きなマージンで改善することができ、強化学習だけでは解決できない複雑なタスクを解決できることが示される。
論文 参考訳(メタデータ) (2021-08-12T17:51:18Z) - Learning from Imperfect Demonstrations from Agents with Varying Dynamics [29.94164262533282]
我々は,実演が模倣学習にどの程度有用かを測定するために,実現可能性スコアと最適度スコアからなる指標を開発した。
シミュレーションと実ロボットによる4つの環境実験により,学習方針の改善が期待された。
論文 参考訳(メタデータ) (2021-03-10T07:39:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。