論文の概要: Critical Features Tracking on Triangulated Irregular Networks by a Scale-Space Method
- arxiv url: http://arxiv.org/abs/2409.06638v1
- Date: Tue, 10 Sep 2024 16:48:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 15:56:06.931571
- Title: Critical Features Tracking on Triangulated Irregular Networks by a Scale-Space Method
- Title(参考訳): スケール空間法による三角不規則ネットワーク上の臨界特徴追跡
- Authors: Haoan Feng, Yunting Song, Leila De Floriani,
- Abstract要約: 三角不規則ネットワーク(TIN)のための新しいスケール空間解析パイプラインを提案する。
TINは不規則に分散した点雲から直接生成することができ、重要な特徴を正確に保存することができる。
我々のパイプラインは、TINのトポロジ上重要な特徴を効率的に識別し、追跡することができる。
- 参考スコア(独自算出の注目度): 6.61869909137744
- License:
- Abstract: The scale-space method is a well-established framework that constructs a hierarchical representation of an input signal and facilitates coarse-to-fine visual reasoning. Considering the terrain elevation function as the input signal, the scale-space method can identify and track significant topographic features across different scales. The number of scales a feature persists, called its life span, indicates the importance of that feature. In this way, important topographic features of a landscape can be selected, which are useful for many applications, including cartography, nautical charting, and land-use planning. The scale-space methods developed for terrain data use gridded Digital Elevation Models (DEMs) to represent the terrain. However, gridded DEMs lack the flexibility to adapt to the irregular distribution of input data and the varied topological complexity of different regions. Instead, Triangulated Irregular Networks (TINs) can be directly generated from irregularly distributed point clouds and accurately preserve important features. In this work, we introduce a novel scale-space analysis pipeline for TINs, addressing the multiple challenges in extending grid-based scale-space methods to TINs. Our pipeline can efficiently identify and track topologically important features on TINs. Moreover, it is capable of analyzing terrains with irregular boundaries, which poses challenges for grid-based methods. Comprehensive experiments show that, compared to grid-based methods, our TIN-based pipeline is more efficient, accurate, and has better resolution robustness.
- Abstract(参考訳): スケールスペース法は、入力信号の階層的表現を構築し、粗い視覚的推論を容易にする、確立されたフレームワークである。
地形標高関数を入力信号として考慮し、スケール空間法は、異なるスケールで重要な地形特徴を特定し、追跡することができる。
ある機能が持続するスケールの数は、そのライフスパンと呼ばれ、その機能の重要性を示している。
このように、ランドスケープの重要な地形的特徴が選択可能であり、地図作成、海図作成、土地利用計画など多くの応用に有用である。
地形データをグリッド化されたデジタル標高モデル (DEM) を用いて, 地形を表わすスケール空間法を開発した。
しかし、グリッド化されたDEMは入力データの不規則分布と異なる領域の位相的複雑さに適応する柔軟性に欠ける。
代わりに、三角不規則ネットワーク(TIN)は不規則に分散した点雲から直接生成し、重要な特徴を正確に保存することができる。
本研究では、グリッドベースのスケールスペース手法をTINに拡張する際の複数の課題に対処する、TINのための新しいスケールスペース解析パイプラインを提案する。
我々のパイプラインは、TINのトポロジ上重要な特徴を効率的に識別し、追跡することができる。
さらに、不規則な境界を持つ地形を解析し、グリッドベースの手法の課題を提起する。
網羅的な実験によると、グリッドベースの手法と比較して、我々のTINベースのパイプラインはより効率的で正確であり、解像度の堅牢性も向上している。
関連論文リスト
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - LMSeg: A deep graph message-passing network for efficient and accurate semantic segmentation of large-scale 3D landscape meshes [3.482371041476053]
本稿では,大規模3次元ランドスケープメッシュ上でのセマンティックセマンティックセグメンテーションを効率的かつ正確に行うために,エンドツーエンドのディープグラフメッセージパッシングネットワークであるLMSegを提案する。
偏心グラフの階層的および局所的なプーリングは、効果的な幾何集約モジュールとともに、小さく不規則なメッシュオブジェクトの高速な推論と正確なセグメンテーションを可能にする。
論文 参考訳(メタデータ) (2024-07-05T07:55:06Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
本稿では,変換器を用いたディープホモグラフィー推定(DHE)ネットワークを提案する。
バックボーンネットワークによって抽出された濃密な特徴写像を入力とし、高速で学習可能な幾何的検証のためにホモグラフィーに適合する。
ベンチマークデータセットを用いた実験により,本手法はいくつかの最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-02-25T13:22:17Z) - Diffusion-based Data Augmentation for Object Counting Problems [62.63346162144445]
拡散モデルを用いて広範なトレーニングデータを生成するパイプラインを開発する。
拡散モデルを用いて位置ドットマップ上に条件付き画像を生成するのはこれが初めてである。
提案した拡散モデルにおけるカウント損失は,位置ドットマップと生成した群集画像との差を効果的に最小化する。
論文 参考訳(メタデータ) (2024-01-25T07:28:22Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
本稿では,"プレーン"特性を維持できる改良型DETR検出器を提案する。
特定の局所性制約を伴わずに、単一スケールの機能マップとグローバルなクロスアテンション計算を使用する。
マルチスケールな特徴マップと局所性制約の欠如を補うために,2つの単純な技術が平易な設計において驚くほど効果的であることを示す。
論文 参考訳(メタデータ) (2023-08-03T17:59:04Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - Geo-Adaptive Deep Spatio-Temporal predictive modeling for human mobility [5.864710987890994]
深部GA-vLSは、データが不規則なデータを扱うという課題に直面し、定形かつ規則的なテンソル形状のデータを仮定する。
本稿では,その再帰的メカニズムを維持しつつ,新たなデータ構造に基づくジオアウェアな学習操作を提案する。
論文 参考訳(メタデータ) (2022-11-27T16:51:28Z) - Scalable Self-Supervised Representation Learning from Spatiotemporal
Motion Trajectories for Multimodal Computer Vision [0.0]
本稿では,GPSトラジェクトリから地理的位置の表現を学習するための自己教師付きラベルなし手法を提案する。
到達可能性埋め込みは意味論的に意味のある表現であり,精度・リコール曲線(AUPRC)測定値の領域を用いて測定すると,性能が4~23%向上することを示す。
論文 参考訳(メタデータ) (2022-10-07T02:41:02Z) - Reachability Embeddings: Scalable Self-Supervised Representation
Learning from Markovian Trajectories for Geospatial Computer Vision [0.0]
ラベルのないGPSトラジェクトリから地理的位置の表現を学習するための自己教師付き手法を提案する。
スケーラブルで分散されたアルゴリズムは、リーチビリティ・サマリーと呼ばれるイメージライクな表現を計算するために提示される。
到達可能性埋め込みは意味的に意味のある表現であり、結果として性能が4~23%向上することを示す。
論文 参考訳(メタデータ) (2021-10-24T20:10:22Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Gaussian Process Gradient Maps for Loop-Closure Detection in
Unstructured Planetary Environments [17.276441789710574]
以前にマップされた位置を認識する能力は、自律システムにとって不可欠な機能である。
非構造的な惑星のような環境は、地形の類似性のためにこれらのシステムに大きな課題をもたらす。
本稿では,空間情報のみを用いたループ閉鎖問題の解法を提案する。
論文 参考訳(メタデータ) (2020-09-01T04:41:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。