KANtrol: A Physics-Informed Kolmogorov-Arnold Network Framework for Solving Multi-Dimensional and Fractional Optimal Control Problems
- URL: http://arxiv.org/abs/2409.06649v1
- Date: Tue, 10 Sep 2024 17:12:37 GMT
- Title: KANtrol: A Physics-Informed Kolmogorov-Arnold Network Framework for Solving Multi-Dimensional and Fractional Optimal Control Problems
- Authors: Alireza Afzal Aghaei,
- Abstract summary: We introduce the KANtrol framework to solve optimal control problems involving continuous time variables.
We show how automatic differentiation is utilized to compute exact derivatives for integer-order dynamics.
We tackle multi-dimensional problems, including the optimal control of a 2D partial heat differential equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce the KANtrol framework, which utilizes Kolmogorov-Arnold Networks (KANs) to solve optimal control problems involving continuous time variables. We explain how Gaussian quadrature can be employed to approximate the integral parts within the problem, particularly for integro-differential state equations. We also demonstrate how automatic differentiation is utilized to compute exact derivatives for integer-order dynamics, while for fractional derivatives of non-integer order, we employ matrix-vector product discretization within the KAN framework. We tackle multi-dimensional problems, including the optimal control of a 2D heat partial differential equation. The results of our simulations, which cover both forward and parameter identification problems, show that the KANtrol framework outperforms classical MLPs in terms of accuracy and efficiency.
Related papers
- Toward Efficient Kernel-Based Solvers for Nonlinear PDEs [19.975293084297014]
This paper introduces a novel kernel learning framework toward efficiently solving nonlinear partial differential equations (PDEs)
In contrast to the state-of-the-art kernel solver that embeds differential operators within kernels, our approach eliminates these operators from the kernel.
We model the solution using a standard kernel form and differentiate the interpolant to compute the derivatives.
arXiv Detail & Related papers (2024-10-15T01:00:43Z) - A Physics-Informed Machine Learning Approach for Solving Distributed Order Fractional Differential Equations [0.0]
This paper introduces a novel methodology for solving distributed-order fractional differential equations using a physics-informed machine learning framework.
By embedding the distributed-order functional equation into the SVR framework, we incorporate physical laws directly into the learning process.
The effectiveness of the proposed approach is validated through a series of numerical experiments on Caputo-based distributed-order fractional differential equations.
arXiv Detail & Related papers (2024-09-05T13:20:10Z) - PINNIES: An Efficient Physics-Informed Neural Network Framework to Integral Operator Problems [0.0]
This paper introduces an efficient tensor-vector product technique for the approximation of integral operators within physics-informed deep learning frameworks.
We demonstrate the applicability of this method to both Fredholm and Volterra integral operators.
We also propose a fast matrix-vector product algorithm for efficiently computing the fractional Caputo derivative.
arXiv Detail & Related papers (2024-09-03T13:43:58Z) - Generation of C-NOT, SWAP, and C-Z Gates for Two Qubits Using Coherent
and Incoherent Controls and Stochastic Optimization [56.47577824219207]
We consider a general form of the dynamics of open quantum systems determined by the Gorini-Kossakowsky-Sudarchhan-Lindblad type master equation.
We analyze the control problems of generating two-qubit C-NOT, SWAP, and C-Z gates using piecewise constant controls and optimization.
arXiv Detail & Related papers (2023-12-09T17:55:47Z) - Revisiting Implicit Differentiation for Learning Problems in Optimal
Control [31.622109513774635]
This paper proposes a new method for differentiating through optimal trajectories arising from non- discrete, constrained discrete optimal control (COC) problems.
We show that the trajectory derivatives scale linearly with the number of timesteps and significantly improved scalability with model size.
arXiv Detail & Related papers (2023-10-23T00:51:24Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
We consider a model of two qubits driven by coherent and incoherent time-dependent controls.
The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation.
We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls.
arXiv Detail & Related papers (2022-11-04T15:20:18Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
We propose a numerical scheme based on Random Projection Neural Networks (RPNN) for the solution of Ordinary Differential Equations (ODEs)
We show that our proposed scheme yields good numerical approximation accuracy without being affected by the stiffness, thus outperforming in same cases the textttode45 and textttode15s functions.
arXiv Detail & Related papers (2021-08-03T15:49:17Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.