論文の概要: DA-MoE: Towards Dynamic Expert Allocation for Mixture-of-Experts Models
- arxiv url: http://arxiv.org/abs/2409.06669v1
- Date: Tue, 10 Sep 2024 17:36:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 16:39:07.906561
- Title: DA-MoE: Towards Dynamic Expert Allocation for Mixture-of-Experts Models
- Title(参考訳): DA-MoE:Mixture-of-Expertsモデルのための動的エキスパートアロケーションを目指して
- Authors: Maryam Akhavan Aghdam, Hongpeng Jin, Yanzhao Wu,
- Abstract要約: そこで本稿では,DA-MoEモデルに対して,有効トークン重要度に基づく可変数のエキスパートを動的に割り当てる手法を提案する。
提案手法は,最新のトランスフォーマーベースのMoEモデルをGLUEベンチマークで一貫した性能向上を実現している。
- 参考スコア(独自算出の注目度): 1.4255659581428335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based Mixture-of-Experts (MoE) models have been driving several recent technological advancements in Natural Language Processing (NLP). These MoE models adopt a router mechanism to determine which experts to activate for routing input tokens. However, existing router mechanisms allocate a fixed number of experts to each token, which neglects the varying importance of different input tokens. In this study, we propose a novel dynamic router mechanism that Dynamically Allocates a variable number of experts for Mixture-of-Experts (DA-MoE) models based on an effective token importance measure. First, we show that the Transformer attention mechanism provides a natural and effective way of calculating token importance. Second, we propose a dynamic router mechanism that effectively decides the optimal number of experts (K) and allocates the top-K experts for each input token. Third, comprehensive experiments on several benchmark datasets demonstrate that our DA-MoE approach consistently outperforms the state-of-the-art Transformer based MoE model on the popular GLUE benchmark.
- Abstract(参考訳): トランスフォーマーベースのMixture-of-Experts (MoE)モデルは、自然言語処理(NLP)における最近の技術進歩を推進している。
これらのMoEモデルはルータ機構を採用し、どの専門家が入力トークンをルーティングするためにアクティベートするかを決定する。
しかし、既存のルータ機構は各トークンに一定数の専門家を割り当て、異なる入力トークンの重要性を無視する。
本研究では,Mixture-of-Experts(DA-MoE)モデルに対する可変数のエキスパートを効果的なトークン重要度尺度に基づいて動的にアロケートする,新しい動的ルータ機構を提案する。
まず,トランスフォーマーの注意機構がトークンの重要度を計算する自然な方法であることを示す。
第2に,各入力トークンに対して,最適な専門家数(K)を効果的に決定し,上位K専門家を割り当てる動的ルータ機構を提案する。
第三に、いくつかのベンチマークデータセットに関する包括的な実験では、私たちのDA-MoEアプローチが、人気の高いGLUEベンチマーク上で、最先端のTransformerベースのMoEモデルよりも一貫して優れています。
関連論文リスト
- Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
マルチタスク学習(MTL)は、共有モデルを利用して複数のタスクを遂行し、知識伝達を促進する。
マルチタスクモデル統合のためのウェイトエンセブリング・ミックス・オブ・エキスパート(WEMoE)手法を提案する。
WEMoEとE-WEMoEは, MTL性能, 一般化, 堅牢性の観点から, 最先端(SOTA)モデルマージ法より優れていることを示す。
論文 参考訳(メタデータ) (2024-10-29T07:16:31Z) - Unchosen Experts Can Contribute Too: Unleashing MoE Models' Power by Self-Contrast [58.98411447739218]
Mixture-of-Experts (MoE) は、計算効率を保ちながら、モデルサイズをスケールするための顕著なアーキテクチャとして登場した。
本研究では,無声専門家を推論中に自己コントラスト的に活用する学習自由戦略である自己コントラスト混合(SCMoE)を提案する。
我々の手法は概念的には単純で計算量も軽量であり、グリージー復号法に比べて最小限の遅延を発生させる。
論文 参考訳(メタデータ) (2024-05-23T12:45:29Z) - Dynamic Mixture of Experts: An Auto-Tuning Approach for Efficient Transformer Models [33.834215393960605]
本稿では,トランスフォーマーに基づく基礎モデルのトレーニングと推論の効率を高めるために,DynMoE(Dynamic Mixture of Experts)技術を導入する。
DynMoEには、各トークンがアクティベートする専門家の数を自動的に決定できる新しいゲーティングメソッドが組み込まれている。
本研究は,視覚・言語タスクにおけるGMoEと視覚言語タスクにおけるMoE-LLaVAとの競合性能を比較検討した。
論文 参考訳(メタデータ) (2024-05-23T08:18:30Z) - Lory: Fully Differentiable Mixture-of-Experts for Autoregressive Language Model Pre-training [73.90260246781435]
私たちは、このようなアーキテクチャを自動回帰言語モデルに拡張する最初のアプローチであるLoryを紹介します。
パラメータマッチングされた高密度モデルよりも、多種多様な下流タスクにおいて顕著な性能向上を示す。
セグメントレベルのルーティングにもかかわらず、Loryモデルはトークンレベルのルーティングを備えた最先端のMoEモデルと比較して、競合的なパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-06T03:06:33Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Harder Tasks Need More Experts: Dynamic Routing in MoE Models [58.18526590138739]
本稿では,Mixture of Experts(MoE)モデルのための新しい動的専門家選択フレームワークを提案する。
提案手法は,各入力に対する専門家選択の信頼性レベルに基づいて,専門家を動的に選択する。
論文 参考訳(メタデータ) (2024-03-12T13:41:15Z) - Routers in Vision Mixture of Experts: An Empirical Study [26.51711534240885]
Mixture-of-Experts (MoE)モデルは、計算コストを大幅に増加させることなく、モデル容量をスケールアップする有望な方法である。
MoEsの主要なコンポーネントはルータであり、どのパラメータ(専門家)プロセスのサブセットが埋め込み(トークン)を特徴付けるかを決定する。
論文 参考訳(メタデータ) (2024-01-29T08:58:07Z) - Mixture of Attention Heads: Selecting Attention Heads Per Token [40.04159325505842]
Mixture of Attention Heads (MoA)は、マルチヘッドアテンションとMoEメカニズムを組み合わせた新しいアーキテクチャである。
MoAは、標準的なマルチヘッドアテンション層よりも強力なパフォーマンスを実現している。
MoAはまた、ヘッドのユーティリティを自動的に区別し、モデルの解釈可能性について議論するための新しい視点を提供する。
論文 参考訳(メタデータ) (2022-10-11T04:54:05Z) - Taming Sparsely Activated Transformer with Stochastic Experts [76.0711573018493]
わずかに活性化されたモデル(SAM)は、計算コストを大幅に増加させることなく、非常に大量のパラメータを持つように容易にスケールすることができる。
本稿では,新しいエキスパートベースモデルTHOR(Transformer witH StOchastic ExpeRts)を提案する。
Switch Transformerのような古典的なエキスパートベースのモデルとは異なり、THORの専門家はトレーニングと推論の間、各入力に対してランダムにアクティベートされる。
論文 参考訳(メタデータ) (2021-10-08T17:15:47Z) - SpeechMoE: Scaling to Large Acoustic Models with Dynamic Routing Mixture
of Experts [29.582683923988203]
Mixture of Experts (MoE)ベースのTransformerは多くの領域で有望な結果を示している。
本研究では,音声認識のためのモデルであるSpeechMoEについて検討する。
新しいルータアーキテクチャは、共有埋め込みネットワークからの情報を同時に利用できるSpeechMoEで使用されている。
論文 参考訳(メタデータ) (2021-05-07T02:38:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。