E2LLM: Encoder Elongated Large Language Models for Long-Context Understanding and Reasoning
- URL: http://arxiv.org/abs/2409.06679v1
- Date: Tue, 10 Sep 2024 17:44:35 GMT
- Title: E2LLM: Encoder Elongated Large Language Models for Long-Context Understanding and Reasoning
- Authors: Zihan Liao, Jun Wang, Hang Yu, Lingxiao Wei, Jianguo Li, Jun Wang, Wei Zhang,
- Abstract summary: We introduce E2LLM (Encodergated Large Language Models), a novel approach that effectively navigates the "impossible triangle"
The method involves splitting long contexts into chunks, compressing each into embedding vectors via a pretrained text encoder, and utilizing an adapter to align these representations with a decoder-only LLM.
Experimental results demonstrate that E2LLM achieves superior performance in long-context scenarios while balancing efficiency, performance, and compatibility with pretrained models.
- Score: 20.660297311025417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of Large Language Models (LLMs), the ability to process long contexts is increasingly crucial for tasks such as multi-round dialogues, code generation, and document summarization. This paper addresses the challenges of enhancing the long-context performance, reducing computational complexity, and leveraging pretrained models collectively termed the "impossible triangle." We introduce E2LLM (Encoder Elongated Large Language Models), a novel approach that effectively navigates this paradox. The method involves splitting long contexts into chunks, compressing each into embedding vectors via a pretrained text encoder, and utilizing an adapter to align these representations with a decoder-only LLM. Two training objectives, focusing on reconstruction of the encoder output and long-context instruction fine-tuning, are employed to facilitate the understanding of soft prompts by the LLM. Experimental results demonstrate that E2LLM achieves superior performance in long-context scenarios while balancing efficiency, performance, and compatibility with pretrained models. Our framework thus represents a significant advancement in the field, contributing to effective long-text modeling.
Related papers
- EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - Investigating Decoder-only Large Language Models for Speech-to-text Translation [39.17113782374464]
Large language models (LLMs) are known for their exceptional reasoning capabilities, generalizability, and fluency across diverse domains.
We propose a decoder-only architecture that enables the LLM to directly consume the encoded speech representation and generate the text translation.
Our model achieves state-of-the-art performance on CoVoST 2 and FLEURS among models trained without proprietary data.
arXiv Detail & Related papers (2024-07-03T14:42:49Z) - KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches [52.02764371205856]
Long context capability is a crucial competency for large language models (LLMs)
This work provides a taxonomy of current methods and evaluating 10+ state-of-the-art approaches across seven categories of long context tasks.
arXiv Detail & Related papers (2024-07-01T17:59:47Z) - ELLA: Equip Diffusion Models with LLM for Enhanced Semantic Alignment [20.868216061750402]
We introduce an Efficient Large Language Model Adapter, termed ELLA, which equips text-to-image diffusion models with powerful Large Language Models (LLM)
Our approach adapts semantic features at different stages of the denoising process, assisting diffusion models in interpreting lengthy and intricate prompts over sampling timesteps.
To assess text-to-image models in dense prompt following, we introduce a challenging benchmark consisting of 1K dense prompts.
arXiv Detail & Related papers (2024-03-08T08:08:10Z) - Long-Context Language Modeling with Parallel Context Encoding [37.64884969997378]
We introduce a framework that can be applied to any existing decoder-only LLMs to extend their context window.
CEPE employs a small encoder to process long inputs chunk by chunk, enabling the frozen decoder to utilize additional contexts via cross-attention.
CEPE yields strong performance on language modeling and in-context learning.
arXiv Detail & Related papers (2024-02-26T14:47:35Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
We propose a novel framework specifically designed for speculative sampling.
Within this framework, we introduce a lightweight draft model that effectively utilizes previously generated tokens to predict subsequent words.
We demonstrate impressive results, achieving an average latency speedup ratio of 2.7x compared to the vanilla auto-regressive decoding approach.
arXiv Detail & Related papers (2024-02-24T08:10:39Z) - Bidirectional Trained Tree-Structured Decoder for Handwritten
Mathematical Expression Recognition [51.66383337087724]
The Handwritten Mathematical Expression Recognition (HMER) task is a critical branch in the field of OCR.
Recent studies have demonstrated that incorporating bidirectional context information significantly improves the performance of HMER models.
We propose the Mirror-Flipped Symbol Layout Tree (MF-SLT) and Bidirectional Asynchronous Training (BAT) structure.
arXiv Detail & Related papers (2023-12-31T09:24:21Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVEN is a model that combines retrieval-augmented masked language modeling and prefix language modeling.
Fusion-in-Context Learning enables the model to leverage more in-context examples without requiring additional training.
Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning.
arXiv Detail & Related papers (2023-08-15T17:59:18Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
We propose the In-context Autoencoder (ICAE) to compress a long context into short compact memory slots.
ICAE is first pretrained using both autoencoding and language modeling objectives on massive text data.
arXiv Detail & Related papers (2023-07-13T17:59:21Z) - Orthros: Non-autoregressive End-to-end Speech Translation with
Dual-decoder [64.55176104620848]
We propose a novel NAR E2E-ST framework, Orthros, in which both NAR and autoregressive (AR) decoders are jointly trained on the shared speech encoder.
The latter is used for selecting better translation among various length candidates generated from the former, which dramatically improves the effectiveness of a large length beam with negligible overhead.
Experiments on four benchmarks show the effectiveness of the proposed method in improving inference speed while maintaining competitive translation quality.
arXiv Detail & Related papers (2020-10-25T06:35:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.