Alignist: CAD-Informed Orientation Distribution Estimation by Fusing Shape and Correspondences
- URL: http://arxiv.org/abs/2409.06683v2
- Date: Wed, 11 Sep 2024 16:29:39 GMT
- Title: Alignist: CAD-Informed Orientation Distribution Estimation by Fusing Shape and Correspondences
- Authors: Shishir Reddy Vutukur, Rasmus Laurvig Haugaard, Junwen Huang, Benjamin Busam, Tolga Birdal,
- Abstract summary: We propose a pose distribution estimation method leveraging symmetry respecting correspondence distributions and shape information obtained using a CAD model.
Our approach converges much faster and learns distribution better by focusing on learning sharper distribution near all the valid modes.
- Score: 27.788874594451283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object pose distribution estimation is crucial in robotics for better path planning and handling of symmetric objects. Recent distribution estimation approaches employ contrastive learning-based approaches by maximizing the likelihood of a single pose estimate in the absence of a CAD model. We propose a pose distribution estimation method leveraging symmetry respecting correspondence distributions and shape information obtained using a CAD model. Contrastive learning-based approaches require an exhaustive amount of training images from different viewpoints to learn the distribution properly, which is not possible in realistic scenarios. Instead, we propose a pipeline that can leverage correspondence distributions and shape information from the CAD model, which are later used to learn pose distributions. Besides, having access to pose distribution based on correspondences before learning pose distributions conditioned on images, can help formulate the loss between distributions. The prior knowledge of distribution also helps the network to focus on getting sharper modes instead. With the CAD prior, our approach converges much faster and learns distribution better by focusing on learning sharper distribution near all the valid modes, unlike contrastive approaches, which focus on a single mode at a time. We achieve benchmark results on SYMSOL-I and T-Less datasets.
Related papers
- Patch-Based Diffusion Models Beat Whole-Image Models for Mismatched Distribution Inverse Problems [12.5216516851131]
We study out of distribution (OOD) problems where a known training distribution is first provided.
We use a patch-based diffusion prior that learns the image distribution solely from patches.
In both settings, the patch-based method can obtain high quality image reconstructions that can outperform whole-image models.
arXiv Detail & Related papers (2024-10-15T16:02:08Z) - A Distributional Analogue to the Successor Representation [54.99439648059807]
This paper contributes a new approach for distributional reinforcement learning.
It elucidates a clean separation of transition structure and reward in the learning process.
As an illustration, we show that it enables zero-shot risk-sensitive policy evaluation.
arXiv Detail & Related papers (2024-02-13T15:35:24Z) - Dr. FERMI: A Stochastic Distributionally Robust Fair Empirical Risk
Minimization Framework [12.734559823650887]
In the presence of distribution shifts, fair machine learning models may behave unfairly on test data.
Existing algorithms require full access to data and cannot be used when small batches are used.
This paper proposes the first distributionally robust fairness framework with convergence guarantees that do not require knowledge of the causal graph.
arXiv Detail & Related papers (2023-09-20T23:25:28Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - SurfEmb: Dense and Continuous Correspondence Distributions for Object
Pose Estimation with Learnt Surface Embeddings [2.534402217750793]
We present an approach to learn dense, continuous 2D-3D correspondence distributions over the surface of objects from data.
We also present a new method for 6D pose estimation of rigid objects using the learnt distributions to sample, score and refine pose hypotheses.
arXiv Detail & Related papers (2021-11-26T13:39:38Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
Trarimiy prediction is confronted with the dilemma to capture the multi-modal nature of future dynamics.
We present a distribution discrimination (DisDis) method to predict personalized motion patterns.
Our method can be integrated with existing multi-modal predictive models as a plug-and-play module.
arXiv Detail & Related papers (2021-07-29T17:42:12Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
spectral-based subspace learning is a common data preprocessing step in many machine learning pipelines.
Most subspace learning methods do not take into consideration possible measurement inaccuracies or artifacts that can lead to data with high uncertainty.
arXiv Detail & Related papers (2020-09-01T15:08:23Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Calibrated Adversarial Refinement for Stochastic Semantic Segmentation [5.849736173068868]
We present a strategy for learning a calibrated predictive distribution over semantic maps, where the probability associated with each prediction reflects its ground truth correctness likelihood.
We demonstrate the versatility and robustness of the approach by achieving state-of-the-art results on the multigrader LIDC dataset and on a modified Cityscapes dataset with injected ambiguities.
We show that the core design can be adapted to other tasks requiring learning a calibrated predictive distribution by experimenting on a toy regression dataset.
arXiv Detail & Related papers (2020-06-23T16:39:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.