Calibrated Adversarial Refinement for Stochastic Semantic Segmentation
- URL: http://arxiv.org/abs/2006.13144v3
- Date: Wed, 4 Aug 2021 17:04:53 GMT
- Title: Calibrated Adversarial Refinement for Stochastic Semantic Segmentation
- Authors: Elias Kassapis, Georgi Dikov, Deepak K. Gupta, Cedric Nugteren
- Abstract summary: We present a strategy for learning a calibrated predictive distribution over semantic maps, where the probability associated with each prediction reflects its ground truth correctness likelihood.
We demonstrate the versatility and robustness of the approach by achieving state-of-the-art results on the multigrader LIDC dataset and on a modified Cityscapes dataset with injected ambiguities.
We show that the core design can be adapted to other tasks requiring learning a calibrated predictive distribution by experimenting on a toy regression dataset.
- Score: 5.849736173068868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In semantic segmentation tasks, input images can often have more than one
plausible interpretation, thus allowing for multiple valid labels. To capture
such ambiguities, recent work has explored the use of probabilistic networks
that can learn a distribution over predictions. However, these do not
necessarily represent the empirical distribution accurately. In this work, we
present a strategy for learning a calibrated predictive distribution over
semantic maps, where the probability associated with each prediction reflects
its ground truth correctness likelihood. To this end, we propose a novel
two-stage, cascaded approach for calibrated adversarial refinement: (i) a
standard segmentation network is trained with categorical cross entropy to
predict a pixelwise probability distribution over semantic classes and (ii) an
adversarially trained stochastic network is used to model the inter-pixel
correlations to refine the output of the first network into coherent samples.
Importantly, to calibrate the refinement network and prevent mode collapse, the
expectation of the samples in the second stage is matched to the probabilities
predicted in the first. We demonstrate the versatility and robustness of the
approach by achieving state-of-the-art results on the multigrader LIDC dataset
and on a modified Cityscapes dataset with injected ambiguities. In addition, we
show that the core design can be adapted to other tasks requiring learning a
calibrated predictive distribution by experimenting on a toy regression
dataset. We provide an open source implementation of our method at
https://github.com/EliasKassapis/CARSSS.
Related papers
- Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - Domain Generalization with Small Data [27.040070085669086]
We learn a domain-invariant representation based on the probabilistic framework by mapping each data point into probabilistic embeddings.
Our proposed method can marriage the measurement on the textitdistribution over distributions (i.e., the global perspective alignment) and the distribution-based contrastive semantic alignment.
arXiv Detail & Related papers (2024-02-09T02:59:08Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
Recent advanced Text-to-Image (T2I) diffusion models are sometimes too imaginative for existing off-the-shelf dense predictors to estimate.
We introduce DMP, a pipeline utilizing pre-trained T2I models as a prior for dense prediction tasks.
Despite limited-domain training data, the approach yields faithful estimations for arbitrary images, surpassing existing state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-30T18:59:44Z) - Distribution Shift Inversion for Out-of-Distribution Prediction [57.22301285120695]
We propose a portable Distribution Shift Inversion algorithm for Out-of-Distribution (OoD) prediction.
We show that our method provides a general performance gain when plugged into a wide range of commonly used OoD algorithms.
arXiv Detail & Related papers (2023-06-14T08:00:49Z) - End-to-End Trajectory Distribution Prediction Based on Occupancy Grid
Maps [29.67295706224478]
In this paper, we aim to forecast a future trajectory distribution of a moving agent in the real world, given the social scene images and historical trajectories.
We learn the distribution with symmetric cross-entropy using occupancy grid maps as an explicit and scene-compliant approximation to the ground-truth distribution.
In experiments, our method achieves state-of-the-art performance on the Stanford Drone dataset and Intersection Drone dataset.
arXiv Detail & Related papers (2022-03-31T09:24:32Z) - Learning Structured Gaussians to Approximate Deep Ensembles [10.055143995729415]
This paper proposes using a sparse-structured multivariate Gaussian to provide a closed-form approxorimator for dense image prediction tasks.
We capture the uncertainty and structured correlations in the predictions explicitly in a formal distribution, rather than implicitly through sampling alone.
We demonstrate the merits of our approach on monocular depth estimation and show that the advantages of our approach are obtained with comparable quantitative performance.
arXiv Detail & Related papers (2022-03-29T12:34:43Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - Adaptive Conformal Inference Under Distribution Shift [0.0]
We develop methods for forming prediction sets in an online setting where the data generating distribution is allowed to vary over time in an unknown fashion.
Our framework builds on ideas from conformal inference to provide a general wrapper that can be combined with any black box method.
We test our method, adaptive conformal inference, on two real world datasets and find that its predictions are robust to visible and significant distribution shifts.
arXiv Detail & Related papers (2021-06-01T01:37:32Z) - Simpler Certified Radius Maximization by Propagating Covariances [39.851641822878996]
We show an algorithm for maximizing the certified radius on datasets including Cifar-10, ImageNet, and Places365.
We show how satisfying these criteria yields an algorithm for maximizing the certified radius on datasets with moderate depth, with a small compromise in overall accuracy.
arXiv Detail & Related papers (2021-04-13T01:38:36Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.