論文の概要: Object Modeling from Underwater Forward-Scan Sonar Imagery with Sea-Surface Multipath
- arxiv url: http://arxiv.org/abs/2409.06815v1
- Date: Tue, 10 Sep 2024 18:46:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 17:07:53.266348
- Title: Object Modeling from Underwater Forward-Scan Sonar Imagery with Sea-Surface Multipath
- Title(参考訳): 海面マルチパスを用いた水中前方走査ソナー画像からの物体モデリング
- Authors: Yuhan Liu, Shahriar Negaharipour,
- Abstract要約: 海面近傍で撮影された物体に対する重要な貢献は、気-水界面によるマルチパスアーチファクトの解決である。
ここでは、直接目標後方散乱によって形成された物体像は、ほとんど常にゴーストや鏡部品によって破壊される。
各ビュー内の劣化したオブジェクト領域をモデル化し,ローカライズし,破棄することにより,復元された3次元形状の歪みを回避する。
- 参考スコア(独自算出の注目度): 16.057203527513632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an optimization technique for 3-D underwater object modeling from 2-D forward-scan sonar images at known poses. A key contribution, for objects imaged in the proximity of the sea surface, is to resolve the multipath artifacts due to the air-water interface. Here, the object image formed by the direct target backscatter is almost always corrupted by the ghost and sometimes by the mirror components (generated by the multipath propagation). Assuming a planar air-water interface, we model, localize, and discard the corrupted object region within each view, thus avoiding the distortion of recovered 3-D shape. Additionally, complementary visual cues from the boundary of the mirror component, distinct at suitable sonar poses, are employed to enhance the 3-D modeling accuracy. The optimization is implemented as iterative shape adjustment by displacing the vertices of triangular patches in the 3-D surface mesh model, in order to minimize the discrepancy between the data and synthesized views of the 3-D object model. To this end, we first determine 2-D motion fields that align the object regions in the data and synthesized views, then calculate the 3-D motion of triangular patch centers, and finally the model vertices. The 3-D model is initialized with the solution of an earlier space carving method applied to the same data. The same parameters are applied in various experiments with 2 real data sets, mixed real-synthetic data set, and computer-generated data guided by general findings from a real experiment, to explore the impact of non-flat air-water interface. The results confirm the generation of a refined 3-D model in about half-dozen iterations.
- Abstract(参考訳): 本研究では,2次元前方走査ソナー画像からの3次元水中物体モデリングの最適化手法を提案する。
海面近傍で撮影された物体に対する重要な貢献は、気-水界面によるマルチパスアーチファクトの解決である。
ここでは、直接目標後方散乱によって形成された物体画像は、ゴーストやミラー成分(マルチパス伝搬によって生成される)によってほぼ常に劣化する。
平面的気-水界面を仮定すると、各ビュー内の劣化した物体領域をモデル化、ローカライズ、破棄し、復元された3次元形状の歪みを避ける。
また、3次元モデリング精度を高めるために、適切なソナーポーズで区別されたミラー成分の境界からの相補的な視覚的手がかりを用いる。
この最適化は、3次元表面メッシュモデルにおける三角形パッチの頂点を分解して、データと3次元オブジェクトモデルの合成ビューとの差を最小限に抑え、反復的な形状調整として実装される。
この目的のために、まずデータ内の対象領域と合成されたビューを整列する2次元運動場を決定し、次に三角パッチセンターの3次元運動を計算し、最終的にモデル頂点を決定する。
3次元モデルは、同じデータに適用した初期の空間彫刻法の解法で初期化される。
同じパラメータを、2つの実データセット、混合実合成データセット、および実実験から一般的な知見によって導かれるコンピュータ生成データを用いて、非平坦な空気-水界面の影響を探索する様々な実験に適用した。
その結果,約5倍の繰り返しで改良された3次元モデルの生成が確認された。
関連論文リスト
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
単一の画像から3Dオブジェクトを生成するには、野生で撮影された未ポーズのRGB画像から、目に見えない景色の完全な3D形状とテクスチャを推定する必要がある。
3次元オブジェクト生成の最近の進歩は、物体の形状とテクスチャを再構築する技術を導入している。
本稿では, この限界に対応するために, 2次元拡散モデルと3次元拡散モデルとのギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2024-10-12T10:14:11Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
モノクル3Dオブジェクト検出は、自律運転やロボティクスなど、さまざまなアプリケーションにおいて重要な役割を担っている。
本稿では,VFMM3Dを提案する。VFMM3Dは,ビジョンファウンデーションモデル(VFM)の機能を利用して,単一ビュー画像を正確にLiDARポイントクラウド表現に変換する,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-04-15T03:12:12Z) - ComboVerse: Compositional 3D Assets Creation Using Spatially-Aware Diffusion Guidance [76.7746870349809]
複雑な構成で高品質な3Dアセットを生成する3D生成フレームワークであるComboVerseについて,複数のモデルを組み合わせることを学習して紹介する。
提案手法は,標準スコア蒸留法と比較して,物体の空間的アライメントを重視している。
論文 参考訳(メタデータ) (2024-03-19T03:39:43Z) - MoDA: Modeling Deformable 3D Objects from Casual Videos [84.29654142118018]
神経二元四元系ブレンドスキンニング(NeuDBS)を提案し,スキンを折り畳むことなく3次元点変形を実現する。
異なるフレーム間で2Dピクセルを登録する試みにおいて、標準空間内の3D点を符号化する標準特徴埋め込みの対応性を確立する。
本手法は,ヒトと動物の3Dモデルを,最先端の手法よりも質的,定量的な性能で再構築することができる。
論文 参考訳(メタデータ) (2023-04-17T13:49:04Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
1枚の画像から被写体の3次元表面を再構築することは難しい問題である。
本稿では,1枚の画像から3次元合成とオブジェクトポーズ推定を行う新しい手法を提案する。
提案手法は,複数の実世界のデータセットにまたがって,最先端の再構築性能を実現する。
論文 参考訳(メタデータ) (2023-02-24T20:37:27Z) - AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [15.244852122106634]
形状認識型2D/3D制約を3D検出フレームワークに組み込む手法を提案する。
具体的には、ディープニューラルネットワークを用いて、2次元画像領域の区別された2Dキーポイントを学習する。
2D/3Dキーポイントの基礎的真理を生成するために、自動的なモデル適合手法が提案されている。
論文 参考訳(メタデータ) (2021-08-25T08:50:06Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images
with Virtual Depth [64.29043589521308]
仮想深度で画像を合成することでトレーニングデータを増強するレンダリングモジュールを提案する。
レンダリングモジュールは、RGB画像と対応するスパース深度画像とを入力として、さまざまなフォトリアリスティック合成画像を出力する。
さらに,深度推定タスクを通じて共同で最適化することで,検出モデルを改善する補助モジュールを導入する。
論文 参考訳(メタデータ) (2021-07-28T11:00:47Z) - An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering [0.0]
微分レンダリングは、シングルビュー3Dレコンストラクションに適用できる非常に成功した技術である。
電流は、ある3d再構成対象のレンダリング画像と、与えられたマッチング視点からの接地画像との間のピクセルによる損失を利用して、3d形状のパラメータを最適化する。
再構成された3次元点群の投影が地上真理物体のシルエットをどの程度覆うかを評価する新しい効果的な損失関数を提案する。
論文 参考訳(メタデータ) (2021-03-05T00:02:18Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。