論文の概要: Towards Understanding Human Emotional Fluctuations with Sparse Check-In Data
- arxiv url: http://arxiv.org/abs/2409.06863v1
- Date: Tue, 10 Sep 2024 21:00:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 16:16:15.068075
- Title: Towards Understanding Human Emotional Fluctuations with Sparse Check-In Data
- Title(参考訳): スパースチェックインデータによる人間の感情変動の理解に向けて
- Authors: Sagar Paresh Shah, Ga Wu, Sean W. Kortschot, Samuel Daviau,
- Abstract要約: データスパシティは、さまざまなドメインにわたるAIツールのパワーを制限する重要な課題である。
本稿では,ユーザ中心のフィードバックに基づく学習を統合する新しい確率的フレームワークを提案する。
64のオプションの中で、ユーザの状態を6割の精度で予測できる。
- 参考スコア(独自算出の注目度): 2.8623940003518156
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Data sparsity is a key challenge limiting the power of AI tools across various domains. The problem is especially pronounced in domains that require active user input rather than measurements derived from automated sensors. It is a critical barrier to harnessing the full potential of AI in domains requiring active user engagement, such as self-reported mood check-ins, where capturing a continuous picture of emotional states is essential. In this context, sparse data can hinder efforts to capture the nuances of individual emotional experiences such as causes, triggers, and contributing factors. Existing methods for addressing data scarcity often rely on heuristics or large established datasets, favoring deep learning models that lack adaptability to new domains. This paper proposes a novel probabilistic framework that integrates user-centric feedback-based learning, allowing for personalized predictions despite limited data. Achieving 60% accuracy in predicting user states among 64 options (chance of 1/64), this framework effectively mitigates data sparsity. It is versatile across various applications, bridging the gap between theoretical AI research and practical deployment.
- Abstract(参考訳): データスパシティは、さまざまなドメインにわたるAIツールのパワーを制限する重要な課題である。
この問題は、自動センサーから得られる測定よりもアクティブなユーザ入力を必要とする領域で特に顕著である。
自己報告のムードチェックインなど、アクティブなユーザエンゲージメントを必要とするドメインにおいて、AIの潜在能力を最大限活用するための重要な障壁である。
この文脈では、スパースデータは、原因、引き金、寄与要因などの個人の感情経験のニュアンスを捉えようとする努力を妨げる可能性がある。
データ不足に対処する既存の方法は、しばしばヒューリスティックや大規模なデータセットに依存し、新しいドメインへの適応性に欠けるディープラーニングモデルを好む。
本稿では,ユーザ中心のフィードバックに基づく学習を取り入れた新しい確率的フレームワークを提案する。
64のオプション(最大1/64)でユーザ状態を予測する精度が60%に達すると、このフレームワークはデータ空間を効果的に軽減する。
様々なアプリケーションにまたがって汎用性があり、理論的なAI研究と実践的なデプロイメントのギャップを埋めている。
関連論文リスト
- MaSS: Multi-attribute Selective Suppression for Utility-preserving Data Transformation from an Information-theoretic Perspective [10.009178591853058]
本稿では,このユーティリティ保護プライバシ保護問題に対する情報理論の形式的定義を提案する。
我々は、ターゲットデータセットからセンシティブな属性を抑えることができるデータ駆動学習可能なデータ変換フレームワークを設計する。
その結果,様々な構成下での手法の有効性と一般化性を示した。
論文 参考訳(メタデータ) (2024-05-23T18:35:46Z) - A Novel Loss Function Utilizing Wasserstein Distance to Reduce
Subject-Dependent Noise for Generalizable Models in Affective Computing [0.4818210066519976]
感情は人間の行動の重要な部分であり、思考、意思決定、コミュニケーションスキルに影響を与える可能性がある。
感情を正確に監視し識別する能力は、行動訓練、感情的幸福の追跡、人間とコンピュータのインターフェイスの開発など、多くの人間中心のアプリケーションで有用である。
論文 参考訳(メタデータ) (2023-08-17T01:15:26Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - SECOE: Alleviating Sensors Failure in Machine Learning-Coupled IoT
Systems [0.0]
本論文は,センサ障害を同時に緩和するための積極的なアプローチであるSECOEを提案する。
SECOEは、センサー間の相関を利用してアンサンブル内のモデル数を最小化する新しい技術を含んでいる。
実験の結果,SECOEはセンサ故障の有無の予測精度を効果的に維持することがわかった。
論文 参考訳(メタデータ) (2022-10-05T10:58:39Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Adversarial Deep Feature Extraction Network for User Independent Human
Activity Recognition [4.988898367111902]
本稿では,人間行動認識のための最大平均不一致(MMD)正則化を用いた対向的対象非依存特徴抽出法を提案する。
本手法は,ユーザに依存しない性能を著しく向上し,結果のばらつきを低減できることを示す,よく知られた公開データセット上での評価を行う。
論文 参考訳(メタデータ) (2021-10-23T07:50:32Z) - Towards Handling Uncertainty-at-Source in AI -- A Review and Next Steps
for Interval Regression [6.166295570030645]
本稿では,近年の成長領域である区間値データの線形回帰に着目した。
我々は,最先端手法の詳細な分析を行い,特性の異なるデータセットに適用した場合の動作,利点,落とし穴を明らかにする。
論文 参考訳(メタデータ) (2021-04-15T05:31:10Z) - DomainMix: Learning Generalizable Person Re-Identification Without Human
Annotations [89.78473564527688]
本稿では,ラベル付き合成データセットとラベル付き実世界のデータセットを用いてユニバーサルモデルをトレーニングする方法を示す。
このように、人間のアノテーションはもはや不要であり、大規模で多様な現実世界のデータセットにスケーラブルである。
実験結果から,提案手法は完全な人間のアノテーションで訓練されたアノテーションとほぼ同等であることがわかった。
論文 参考訳(メタデータ) (2020-11-24T08:15:53Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
訓練された条件付き変分オートエンコーダの離散潜時空間をスパース化する問題を考察する。
顕在的理論を用いて、特定の入力条件から直接証拠を受け取る潜在クラスを特定し、そうでないクラスをフィルタリングする。
画像生成や人間の行動予測などの多様なタスクの実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-10-19T01:27:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。