Formative Study for AI-assisted Data Visualization
- URL: http://arxiv.org/abs/2409.06892v1
- Date: Tue, 10 Sep 2024 22:20:28 GMT
- Title: Formative Study for AI-assisted Data Visualization
- Authors: Rania Saber, Anna Fariha,
- Abstract summary: The research aims to identify and categorize the specific visualization problems that arise.
Although tool development has not yet been undertaken, the findings emphasize enhancing AI visualization tools to handle flawed data better.
- Score: 2.957524256549577
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This formative study investigates the impact of data quality on AI-assisted data visualizations, focusing on how uncleaned datasets influence the outcomes of these tools. By generating visualizations from datasets with inherent quality issues, the research aims to identify and categorize the specific visualization problems that arise. The study further explores potential methods and tools to address these visualization challenges efficiently and effectively. Although tool development has not yet been undertaken, the findings emphasize enhancing AI visualization tools to handle flawed data better. This research underscores the critical need for more robust, user-friendly solutions that facilitate quicker and easier correction of data and visualization errors, thereby improving the overall reliability and usability of AI-assisted data visualization processes.
Related papers
- The role of data embedding in quantum autoencoders for improved anomaly detection [0.0]
The performance of Quantum Autoencoders (QAEs) in anomaly detection tasks is critically dependent on the choice of data embedding and ansatz design.
This study explores the effects of three data embedding techniques, data re-uploading, parallel embedding, and alternate embedding, on the representability and effectiveness of QAEs in detecting anomalies.
arXiv Detail & Related papers (2024-09-06T18:00:01Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - HGOE: Hybrid External and Internal Graph Outlier Exposure for Graph Out-of-Distribution Detection [78.47008997035158]
Graph data exhibits greater diversity but lower robustness to perturbations, complicating the integration of outliers.
We propose the introduction of textbfHybrid External and Internal textbfGraph textbfOutlier textbfExposure (HGOE) to improve graph OOD detection performance.
arXiv Detail & Related papers (2024-07-31T16:55:18Z) - PairCFR: Enhancing Model Training on Paired Counterfactually Augmented Data through Contrastive Learning [49.60634126342945]
Counterfactually Augmented Data (CAD) involves creating new data samples by applying minimal yet sufficient modifications to flip the label of existing data samples to other classes.
Recent research reveals that training with CAD may lead models to overly focus on modified features while ignoring other important contextual information.
We employ contrastive learning to promote global feature alignment in addition to learning counterfactual clues.
arXiv Detail & Related papers (2024-06-09T07:29:55Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Advanced Data Augmentation Approaches: A Comprehensive Survey and Future
directions [57.30984060215482]
We provide a background of data augmentation, a novel and comprehensive taxonomy of reviewed data augmentation techniques, and the strengths and weaknesses (wherever possible) of each technique.
We also provide comprehensive results of the data augmentation effect on three popular computer vision tasks, such as image classification, object detection and semantic segmentation.
arXiv Detail & Related papers (2023-01-07T11:37:32Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
Building trustworthy, effective, and responsible machine learning systems hinges on understanding how differences in training data and modeling decisions interact to impact predictive performance.
We focus on a particular type of data-model inefficiency, in which adding training data from some sources can actually lower performance evaluated on key sub-groups of the population.
Our results indicate that data-efficiency is a key component of both accurate and trustworthy machine learning.
arXiv Detail & Related papers (2022-11-11T16:48:27Z) - A Survey of Dataset Refinement for Problems in Computer Vision Datasets [11.45536223418548]
Large-scale datasets have played a crucial role in the advancement of computer vision.
They often suffer from problems such as class imbalance, noisy labels, dataset bias, or high resource costs.
Various data-centric solutions have been proposed to solve the dataset problems.
They improve the quality of datasets by re-organizing them, which we call dataset refinement.
arXiv Detail & Related papers (2022-10-21T03:58:43Z) - Beyond Visuals : Examining the Experiences of Geoscience Professionals
With Vision Disabilities in Accessing Data Visualizations [0.0]
This study seeks to understand the experiences of professionals who are blind/vision impaired in one such STEM discipline (geosciences) in accessing data visualizations.
A reflexive thematic analysis revealed the negative impact of visualizations in influencing their career path, lack of data exploration tools for research, barriers in accessing works of peers and mismatched pace of visualization and accessibility research.
arXiv Detail & Related papers (2022-07-27T00:07:44Z) - Data Curation and Quality Assurance for Machine Learning-based Cyber
Intrusion Detection [1.0276024900942873]
This article first summarizes existing machine learning-based intrusion detection systems and the datasets used for building these systems.
The experimental results show that BERT and GPT were the best algorithms for HIDS on all of the datasets.
We then evaluate the data quality of the 11 datasets based on quality dimensions proposed in this paper to determine the best characteristics that a HIDS dataset should possess in order to yield the best possible result.
arXiv Detail & Related papers (2021-05-20T21:31:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.