1M-Deepfakes Detection Challenge
- URL: http://arxiv.org/abs/2409.06991v1
- Date: Wed, 11 Sep 2024 03:43:53 GMT
- Title: 1M-Deepfakes Detection Challenge
- Authors: Zhixi Cai, Abhinav Dhall, Shreya Ghosh, Munawar Hayat, Dimitrios Kollias, Kalin Stefanov, Usman Tariq,
- Abstract summary: The 1M-Deepfakes Detection Challenge is designed to engage the research community in developing advanced methods for detecting and localizing deepfake manipulations.
The participants can access the AV-Deepfake1M dataset and are required to submit their inference results for evaluation.
The methodologies developed through the challenge will contribute to the development of next-generation deepfake detection and localization systems.
- Score: 31.994908331728958
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The detection and localization of deepfake content, particularly when small fake segments are seamlessly mixed with real videos, remains a significant challenge in the field of digital media security. Based on the recently released AV-Deepfake1M dataset, which contains more than 1 million manipulated videos across more than 2,000 subjects, we introduce the 1M-Deepfakes Detection Challenge. This challenge is designed to engage the research community in developing advanced methods for detecting and localizing deepfake manipulations within the large-scale high-realistic audio-visual dataset. The participants can access the AV-Deepfake1M dataset and are required to submit their inference results for evaluation across the metrics for detection or localization tasks. The methodologies developed through the challenge will contribute to the development of next-generation deepfake detection and localization systems. Evaluation scripts, baseline models, and accompanying code will be available on https://github.com/ControlNet/AV-Deepfake1M.
Related papers
- Contextual Cross-Modal Attention for Audio-Visual Deepfake Detection and Localization [3.9440964696313485]
In the digital age, the emergence of deepfakes and synthetic media presents a significant threat to societal and political integrity.
Deepfakes based on multi-modal manipulation, such as audio-visual, are more realistic and pose a greater threat.
We propose a novel multi-modal attention framework based on recurrent neural networks (RNNs) that leverages contextual information for audio-visual deepfake detection.
arXiv Detail & Related papers (2024-08-02T18:45:01Z) - The Codecfake Dataset and Countermeasures for the Universally Detection of Deepfake Audio [42.84634652376024]
ALM-based deepfake audio exhibits widespread, high deception, and type versatility.
To effectively detect ALM-based deepfake audio, we focus on the mechanism of the ALM-based audio generation method.
We propose the CSAM strategy to learn a domain balanced and generalized minima.
arXiv Detail & Related papers (2024-05-08T08:28:40Z) - AV-Deepfake1M: A Large-Scale LLM-Driven Audio-Visual Deepfake Dataset [21.90332221144928]
We propose the AV-Deepfake1M dataset for the detection and localization of deepfake audio-visual content.
The dataset contains content-driven (i) video manipulations, (ii) audio manipulations, and (iii) audio-visual manipulations for more than 2K subjects resulting in a total of more than 1M videos.
arXiv Detail & Related papers (2023-11-26T14:17:51Z) - AVTENet: Audio-Visual Transformer-based Ensemble Network Exploiting
Multiple Experts for Video Deepfake Detection [53.448283629898214]
The recent proliferation of hyper-realistic deepfake videos has drawn attention to the threat of audio and visual forgeries.
Most previous work on detecting AI-generated fake videos only utilize visual modality or audio modality.
We propose an Audio-Visual Transformer-based Ensemble Network (AVTENet) framework that considers both acoustic manipulation and visual manipulation.
arXiv Detail & Related papers (2023-10-19T19:01:26Z) - A Continual Deepfake Detection Benchmark: Dataset, Methods, and
Essentials [97.69553832500547]
This paper suggests a continual deepfake detection benchmark (CDDB) over a new collection of deepfakes from both known and unknown generative models.
We exploit multiple approaches to adapt multiclass incremental learning methods, commonly used in the continual visual recognition, to the continual deepfake detection problem.
arXiv Detail & Related papers (2022-05-11T13:07:19Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z) - Face Forensics in the Wild [121.23154918448618]
We construct a novel large-scale dataset, called FFIW-10K, which comprises 10,000 high-quality forgery videos.
The manipulation procedure is fully automatic, controlled by a domain-adversarial quality assessment network.
In addition, we propose a novel algorithm to tackle the task of multi-person face forgery detection.
arXiv Detail & Related papers (2021-03-30T05:06:19Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
We introduce a new dataset WildDeepfake which consists of 7,314 face sequences extracted from 707 deepfake videos collected completely from the internet.
We conduct a systematic evaluation of a set of baseline detection networks on both existing and our WildDeepfake datasets, and show that WildDeepfake is indeed a more challenging dataset, where the detection performance can decrease drastically.
arXiv Detail & Related papers (2021-01-05T11:10:32Z) - The DeepFake Detection Challenge (DFDC) Dataset [8.451007921188019]
Deepfakes are a technique that allows anyone to swap two identities in a single video.
To counter this emerging threat, we have constructed an extremely large face swap video dataset.
All recorded subjects agreed to participate in and have their likenesses modified during the construction of the face-swapped dataset.
arXiv Detail & Related papers (2020-06-12T18:15:55Z) - Deepfakes Detection with Automatic Face Weighting [21.723416806728668]
We introduce a method based on convolutional neural networks (CNNs) and recurrent neural networks (RNNs) that extracts visual and temporal features from faces present in videos to accurately detect manipulations.
The method is evaluated with the Deepfake Detection Challenge dataset, providing competitive results compared to other techniques.
arXiv Detail & Related papers (2020-04-25T00:47:42Z) - DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery
Detection [93.24684159708114]
DeeperForensics-1.0 is the largest face forgery detection dataset by far, with 60,000 videos constituted by a total of 17.6 million frames.
The quality of generated videos outperforms those in existing datasets, validated by user studies.
The benchmark features a hidden test set, which contains manipulated videos achieving high deceptive scores in human evaluations.
arXiv Detail & Related papers (2020-01-09T14:37:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.