Towards Predicting Temporal Changes in a Patient's Chest X-ray Images based on Electronic Health Records
- URL: http://arxiv.org/abs/2409.07012v1
- Date: Wed, 11 Sep 2024 04:49:44 GMT
- Title: Towards Predicting Temporal Changes in a Patient's Chest X-ray Images based on Electronic Health Records
- Authors: Daeun Kyung, Junu Kim, Tackeun Kim, Edward Choi,
- Abstract summary: We propose a novel framework, EHRXDiff, which predicts future CXR images by integrating previous CXRs with subsequent medical events.
We demonstrate that our framework generates high-quality, realistic future images that capture potential temporal changes.
This could offer valuable insights for patient monitoring and treatment planning in the medical field.
- Score: 9.398163873685798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chest X-ray imaging (CXR) is an important diagnostic tool used in hospitals to assess patient conditions and monitor changes over time. Generative models, specifically diffusion-based models, have shown promise in generating realistic synthetic X-rays. However, these models mainly focus on conditional generation using single-time-point data, i.e., typically CXRs taken at a specific time with their corresponding reports, limiting their clinical utility, particularly for capturing temporal changes. To address this limitation, we propose a novel framework, EHRXDiff, which predicts future CXR images by integrating previous CXRs with subsequent medical events, e.g., prescriptions, lab measures, etc. Our framework dynamically tracks and predicts disease progression based on a latent diffusion model, conditioned on the previous CXR image and a history of medical events. We comprehensively evaluate the performance of our framework across three key aspects, including clinical consistency, demographic consistency, and visual realism. We demonstrate that our framework generates high-quality, realistic future images that capture potential temporal changes, suggesting its potential for further development as a clinical simulation tool. This could offer valuable insights for patient monitoring and treatment planning in the medical field.
Related papers
- Addressing Asynchronicity in Clinical Multimodal Fusion via Individualized Chest X-ray Generation [14.658627367126009]
We propose DDL-CXR, a method that dynamically generates an up-to-date latent representation of the individualized chest X-ray images.
Our approach leverages latent diffusion models for patient-specific generation strategically conditioned on a previous CXR image and EHR time series.
Experiments using MIMIC datasets show that the proposed model could effectively address asynchronicity in multimodal fusion and consistently outperform existing methods.
arXiv Detail & Related papers (2024-10-23T14:34:39Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - PIE: Simulating Disease Progression via Progressive Image Editing [27.658116659009025]
Progressive Image Editing (PIE) enables controlled manipulation of disease-related image features.
We leverage recent advancements in text-to-image generative models to simulate disease progression accurately and personalize it for each patient.
PIE is the first of its kind to generate disease progression images meeting real-world standards.
arXiv Detail & Related papers (2023-09-21T02:46:32Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Vision-Language Generative Model for View-Specific Chest X-ray Generation [18.347723213970696]
ViewXGen is designed to overcome the limitations of existing methods to generate frontal-view chest X-rays.
Our approach takes into consideration the diverse view positions found in the dataset, enabling the generation of chest X-rays with specific views.
arXiv Detail & Related papers (2023-02-23T17:13:25Z) - Improving Chest X-Ray Classification by RNN-based Patient Monitoring [0.34998703934432673]
We analyze how information about diagnosis can improve CNN-based image classification models.
We show that a model trained on additional patient history information outperforms a model trained without the information by a significant margin.
arXiv Detail & Related papers (2022-10-28T11:47:15Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Evaluating the Clinical Realism of Synthetic Chest X-Rays Generated
Using Progressively Growing GANs [0.0]
Chest x-rays are a vital tool in the workup of many patients.
There is an ever pressing need for greater quantities of labelled data to develop new diagnostic tools.
Previous work has sought to address these concerns by creating class-specific GANs that synthesise images to augment training data.
arXiv Detail & Related papers (2020-10-07T11:47:22Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.